|
Allegro CL |
ANSI Common Lisp 1 Introduction 1.1 Scope, Purpose, and History
1.1.2 HistoryLisp is a family of languages with a long history. Early key ideas in Lisp were developed by John McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. McCarthy's motivation was to develop an algebraic list processing language for artificial intelligence work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the IBM 7090, the Digital Equipment Corporation (DEC) PDP-1, the DEC PDP-6, and the PDP-10. The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970's there were two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp. For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5 Programmer's Manual.MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also introduced the concept of functions that could take a variable number of arguments, macros, arrays, non-local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis on execution speed. By the end of the 1970's, MacLisp was in use at over 50 sites. For further information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp Manual. Interlisp introduced many ideas into Lisp programming environments and methodology. One of the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by Warren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and now in Common Lisp. For further information about Interlisp, see Interlisp Reference Manual.
Although the first implementations of Lisp were on the IBM 704 and the
IBM 7090, later work focussed on the DEC
PDP-6 and, later, PDP-10 computers, the latter being the mainstay of
Lisp and artificial intelligence work at such places as
Massachusetts Institute of Technology (MIT), Stanford University,
and
Carnegie Mellon University (CMU) from the mid-1960's through much of the 1970's.
The PDP-10 computer and its predecessor the PDP-6 computer were, by
design, especially well-suited to Lisp because they had 36-bit words
and 18-bit addresses. This architecture allowed a cons cell to be
stored in one word; single instructions could extract the
car and cdr
parts. The PDP-6 and PDP-10 had fast, powerful stack instructions
that enabled fast function calling.
But the limitations of the PDP-10 were evident by 1973: it supported a
small number of researchers using Lisp, and the small, 18-bit address
space (218 = 262,144 words) limited the size of a single
program.
One response to the address space problem was the Lisp Machine, a
special-purpose computer designed to run Lisp programs. The other
response was to use general-purpose computers with address spaces
larger than 18 bits, such as the DEC VAX and
the The Lisp machine concept was developed in the late 1960's. In the early 1970's, Peter Deutsch, working with Daniel Bobrow, implemented a Lisp on the Alto, a single-user minicomputer, using microcode to interpret a byte-code implementation language. Shortly thereafter, Richard Greenblatt began work on a different hardware and instruction set design at MIT. Although the Alto was not a total success as a Lisp machine, a dialect of Interlisp known as Interlisp-D became available on the D-series machines manufactured by Xerox - the Dorado, Dandelion, Dandetiger, and Dove (or Daybreak). An upward-compatible extension of MacLisp called Lisp Machine Lisp became available on the early MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp Machines (LMI), and Symbolics were on the market by 1981. For further information about Lisp Machine Lisp, see Lisp Machine Manual. During the late 1970's, Lisp Machine Lisp began to expand towards a much fuller language. Sophisticated lambda lists, setf, multiple values, and structures like those in Common Lisp are the results of early experimentation with programming styles by the Lisp Machine group. Jonl White and others migrated these features to MacLisp. Around 1980, Scott Fahlman and others at CMU began work on a Lisp to run on the Scientific Personal Integrated Computing Environment (SPICE) workstation. One of the goals of the project was to design a simpler dialect than Lisp Machine Lisp.
The Macsyma group at MIT began a project during the late 1970's called
the New Implementation of Lisp (NIL) for the VAX, which was headed by
White. One of the stated goals of the NIL project was to fix many of
the historic, but annoying, problems with Lisp while retaining significant
compatibility with MacLisp. At about the same time, a research group at
Stanford University and Lawrence Livermore National Laboratory headed
by Richard P. Gabriel began the design of a Lisp to run on the
The first effort towards Lisp standardization was made in 1969, when Anthony Hearn and Martin Griss at the University of Utah defined Standard Lisp - a subset of Lisp 1.5 and other dialects - to transport REDUCE, a symbolic algebra system. During the 1970's, the Utah group implemented first a retargetable optimizing compiler for Standard Lisp, and then an extended implementation known as Portable Standard Lisp (PSL). By the mid 1980's, PSL ran on about a dozen kinds of computers. For further information about Standard Lisp, see "Standard LISP Report." PSL and Franz Lisp - a MacLisp-like dialect for Unix machines - were the first examples of widely available Lisp dialects on multiple hardware platforms. One of the most important developments in Lisp occurred during the second half of the 1970's: Scheme. Scheme, designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple dialect of Lisp whose design brought to Lisp some of the ideas from programming language semantics developed in the 1960's. Sussman was one of the prime innovators behind many other advances in Lisp technology from the late 1960's through the 1970's. The major contributions of Scheme were lexical scoping, lexical closures, first-class continuations, and simplified syntax (no separation of value cells and function cells). Some of these contributions made a large impact on the design of Common Lisp. For further information about Scheme, see IEEE Standard for the Scheme Programming Language or "Revised3 Report on the Algorithmic Language Scheme." In the late 1970's object-oriented programming concepts started to make a strong impact on Lisp. At MIT, certain ideas from Smalltalk made their way into several widely used programming systems. Flavors, an object-oriented programming system with multiple inheritance, was developed at MIT for the Lisp machine community by Howard Cannon and others. At Xerox, the experience with Smalltalk and Knowledge Representation Language (KRL) led to the development of Lisp Object Oriented Programming System (LOOPS) and later Common LOOPS. For further information on Smalltalk, see Smalltalk-80: The Language and its Implementation. For further information on Flavors, see Flavors: A Non-Hierarchical Approach to Object-Oriented Programming. These systems influenced the design of the Common Lisp Object System (CLOS). CLOS was developed specifically for this standardization effort, and was separately written up in "Common Lisp Object System Specification." However, minor details of its design have changed slightly since that publication, and that paper should not be taken as an authoritative reference to the semantics of the object system as described in this document. In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware implementation groups were developing NIL, Franz Lisp, and PSL; Xerox was developing Interlisp; and the SPICE project at CMU was developing a MacLisp-like dialect of Lisp called SpiceLisp.
In April 1981, after a DARPA-sponsored meeting concerning the
splintered Lisp community, Symbolics, the SPICE project, the NIL
project, and the In 1986 X3J13 was formed as a technical working group to produce a draft for an ANSI Common Lisp standard. Because of the acceptance of Common Lisp, the goals of this group differed from those of the original designers. These new goals included stricter standardization for portability, an object-oriented programming system, a condition system, iteration facilities, and a way to handle large character sets. To accommodate those goals, a new language specification, this document, was developed. |