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1.0 Operating-system interface
2.0 Subprocess functions
3.0 Filesystem manipulation functions
4.0 Temporary directory and files
5.0 Accessing command-line arguments
6.0 Polling and setting environment variables
7.0 The Operating System Interface (OSI) module
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1.0 Lisp constants corresponding to Operating System constants
A Defined Operating System/Lisp constants by architecture
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2.0 Hierarchical Packages
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7.0 Package locking and package definition locking
   7.1 Package locking
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   7.3 Implementation packages
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1.0 Unix symbolic links and truenames
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3.0 Parsing Unix pathnames
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   3.2 Determining the :directory component
   3.3 Determining the :name component
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   3.5 Anomalies
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6.0 Miscellaneous pathname functions
7.0 Logical pathnames
   7.1 Logical pathnames: introduction
   7.2 Logical pathnames: general implementation details
   7.3 Logical pathnames: some points to note
   7.4 Details of cl:load-logical-pathname-translations
8.0 Pathname wildcard syntax

74 Allegro Prolog (prolog.html)
75 Regular Expression API (regexp.htm)
1.0 Regular Expression handling in Allegro CL
2.0 The regexp2 module
   2.1 Matching mode in the regexp2 module
   2.2 Regular expression syntax summary
   2.3 Capturing and back reference
   2.4 Regexp trees
   2.5 User-level API in the regexp2 module
   2.6 Compatibility issues in the regexp2 module
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76 Release Notes for Allegro CL 10.1 (release-notes.htm)
1.0 Introduction
2.0 Information on changes and new stuff since the 10.1 release
   2.1 Changes to the runtime analyzer made in 12/2018 and 2/2019 (10.1 only)
3.0 Fasl files are not-compatible between versions and operating systems
   3.1 All pre-10.1 Lisp compiled files must be recompiled (old fasl files will not load)
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   5.3 macOS notes
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   6.2 Non-backward-compatible changes in the base Lisp
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   6.5 Base Lisp platform-specific information
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      8.3.1 Miscellaneous bug fixes in Common Graphics
   8.4 IDE release notes
      8.4.1 Miscellaneous bug fixes in the IDE
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   8.5 Common Graphics and the IDE on the Mac
   8.6 Functionality to handle differences between Windows and GTK
   8.7 Release notes for the winapi module
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10.0 Release notes for The Emacs/Lisp interface
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1.0 Introduction
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   1.2 Security considerations
2.0 A Simple RPC Example
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   3.1 Stream Socket Connections
   3.2 Datagram Socket Connection
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8.0 Examples
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1.0 Allegro Runtime introduction
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1.0 Runtime analyzer Introduction
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4.0 Further points, including information on temporary files
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   1.3 Parsing XML documents
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2.0 The sax API in Allegro CL
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81 The shell module interface (shell-module.htm)
1.0 Introduction
2.0 Operators, variables, and classes in the Shell module
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2.0 Introduction
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85 Source File Recording (source-file-recording.htm)
1.0 Source-file recording Introduction
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2.0 Redefinition warnings
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86 Allegro CL Startup (startup.htm)
1.0 The Allegro directory
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4.0 Starting Allegro CL
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   8.3 What if the Emacs-Lisp interface does not start?
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14.0 Setting global variables in initialization files
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87 Streams in Allegro CL (streams.htm)
1.0 Simple-stream introduction
2.0 Simple-stream background
   2.1 Problems with Gray streams
   2.2 A new stream hierarchy
3.0 The programming model
   3.1 How to get a simple-stream and how to get a Gray stream
   3.2 Trivial Stream Dispatch
   3.3 Simple-stream Description
4.0 Device Level Functionality
   4.1 Device Interface
5.0 Implementation of Standard Interface Functionality for Simple-Streams
   5.1 Implementation of Common Lisp Functions for simple-streams
   5.2 Extended Interface Functionality
      5.2.1 Blocking behavior in simple-streams
      5.2.2 The endian-swap keyword argument to read-vector and write-vector
   5.3 Force-output and finish-output policy
6.0 Higher Level functions
7.0 Simple-stream Class Hierarchy
8.0 Implementation Strategies
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   10.2 Device-open
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12.0 Encapsulating Streams
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   12.3 Valid connections between octet-oriented and character-oriented streams
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      12.4.1 Rot13b: An Example of Bidirectional Stream Encapsulation
      12.4.2 Base64: an example of binary stream encapsulation
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A Built-in stream methods and their uses
   A.1 The print-object built-in stream method
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88 String utility functions in  Allegro CL (string-utilities.htm)
1.0 Operators in the util-string module

89 The Allegro CL Test harness (test-harness.htm)
1.0 The tester module API
   1.1 Test Harness Variables
   1.2 Test Harness Macros
   1.3 Examples
2.0 Running tests in multiple threads (Lisp processes)

90 The Top Level (top-level.htm)
1.0 Introduction to the Lisp top-level listener
2.0 The prompt
3.0 Commands and expressions 
   3.1 Case sensitivity of input
   3.2 Getting help for top-level commands
   3.3 Command and expression history
   3.4 Anomalies with the :history list
4.0 Break levels
   4.1 Commands to manipulate break levels:
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   6.3 More on the :focus, :arrest, and :unarrest commands
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8.0 Miscellaneous top-level commands
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91 Lisp as a Shared Library (unix-shared-library.htm)
1.0 Why an updated interface
2.0 Lisp as a shared library application files
3.0 Lisp as a shared library application components
4.0 What happens at Lisp as a shared library initialization
5.0 A note about using Foreign Functions on non-os-thread platforms
6.0 C API (routines and data structures)
7.0 Lisp API
8.0 Compilation and Delivery
A OS Specific Library Search Path

92 URI and IRI support in Allegro CL (uri.htm)
1.0 Introduction
   1.1 RFC2396 no longer governs
2.0 The URI and IRI API definition
3.0 Parsing, escape decoding/encoding and the path
4.0 Interning URIs
5.0 Allegro CL implementation notes
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7.0 Examples
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94 Release Notes for Allegro CL 10.0 (version-100-release-notes.htm)
1.0 Introduction
2.0 Information on changes and new stuff since the 10.0 release
3.0 Fasl files are not-compatible between versions and operating systems
   3.1 All pre-10.0 Lisp compiled files must be recompiled (old fasl files will not load)
   3.2 Fasl files may be incompatible in different Lisps on same hardware
4.0 Release Notes for installation
5.0 Release notes for specific platforms
   5.1 Mac OS X notes
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      5.1.2 Installing Mavericks OS (Mac OS X 10.9) may break X11
      5.1.3 Installing Mountain Lion OS (Mac OS X 10.8) may uninstall X11
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6.0 Release Notes for the base Lisp
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96 An XML-RPC API for Allegro Common Lisp (xml-rpc.htm)
1.0 XML-RPC in Allegro CL introduction
2.0 Various utility objects in XML-RPC
3.0 XML-RPC client api
4.0 XML-RPC data api
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6.0 XML-RPC examples
7.0 Index
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