
Google AI Challenge: Planet Wars

Gábor Melis
gmelis@franz.com

Franz Inc.

January, 2011

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 1 / 26

About this presentation

1 Planet wars intro

2 Implementation/AI

3 Meta ramblings

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 2 / 26

(-o-) With parens into spacewar (-o-)

2nd Google AI Challenge: Planet Wars
(http://ai-contest.com/)

Couple of thousand contestants

Several supported programming languages
(C++, Python, Java, Lisp, Go, etc)

Simple real-time strategy game

Agile and e�ective tools
are needed.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 3 / 26

http://ai-contest.com/

Planet Wars: Rules

enemy ships cancel each
other out in battle

planets produce some
ships per turn

neutral planets: short
term sacri�ce for long
term gain

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 4 / 26

Planet Wars: Stealing

Taking over a neutral planet
costs as many ships as there
are defenders.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 5 / 26

Planet Wars: Stealing 2

It is an oft used tactic to wait
for the enemy to take the
neutral, lose ships to neutral
forces, and then take the
planet from him on the next
turn.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 6 / 26

Planet Wars: Redistribution

If ships stay put until they are
needed for defense or attack
then they may be too far
from the action when they are
�nally needed.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 7 / 26

Planet Wars: Multi-planet moves

By combining forces of
multiple planets the target
planet can be taken earlier or
defended later.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 8 / 26

Implementation: Di�culties

position evaluation

practically unbounded number of possible moves

how to test playing strength

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 9 / 26

Implementation: Future

Future is a possible sequence of states of a planet.
In the simplest case the future is calculated from ships already en route in
the game.

;;; A future is a particular sequence of states of a planet. It’s
;;; represented by an OWNERS and a N−SHIPS array.
(defclass future ()
 ((planet :initarg :planet :reader planet)
 (owners :initarg :owners :reader owners)
 (n−ships :initarg :n−ships :reader n−ships)
 ;; Number of ships player 2 lost when attacking neutrals minus the
 ;; number of ships player 1 lost when attacking neutrals in this
 ;; future.
 (balance :initarg :balance :reader balance)))

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 10 / 26

Implementation: Future based evaluation

strength is a piecewise linear function of time

assume that there are no hidden changepoints

score: di�erence of accumulated growths

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 11 / 26

Implementation: Full attack evaluation

Full attack lemma

Assuming that there are no neutral planets and Player 2 can take none of
the planets of Player 1 when both player continuously send all possible
ships to the contested planet, then Player 2 can take none of the planets of
Player 1 even if allowed to attack multiple planets simultaneously in any
pattern.

Is this even true?

In any case full attack future based evaluation is extremely useful.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 12 / 26

Implementation: Move generation

a smallish number of candidate moves must be selected

moves are assembled from per-planet steps

a step is set of orders targeting the same planet

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 13 / 26

Implementation: Steps

the need of a planet is the number of ships per turn needed to take
over or defend that planet

we try to to satisfy the need of the target planet from the surpluses of
friendly planets

once we have steps for all planets they are scored by the normal
evaluation function and the most promising ones combined into a
composite move (subject to validity)

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 14 / 26

Implementation: Surplus

try to control non-linearity

most notable non-linearity is at ownership changes

de�nition of surplus:

The surplus of player P at planet A at time t is the number of ships
that can be sent away on that turn from the defending army without:

making any scheduled order from planet A invalid

causing the planet to be lost anytime after that (observing only the
�eets already in space)

bringing an imminent loss closer in time

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 15 / 26

Implementation: Redistribution

Just a small tweak to an extremely simple scoring function:

;;; The score of a future (of a planet) is simply the difference of
;;; growths captured by the players adjusted by the balance of the
;;; future (that is, taking into account the ships lost when capturing
;;; neutrals).
;;;
;;; Give a very slight positional penalty every turn for every enemy
;;; ship. When FUTURE is a FULL−ATTACK−FUTURE then this has the effect
;;; of preferring positions where the friendly ships are near the
;;; enemy.
(defun score (future player)
 (let ((owners (owners future))
 (n−ships−per−turn (n−ships future))
 (growth (growth (planet future)))
 (score (* (player−multiplier player) (balance future)))
 (opponent (opponent player)))
 (dotimes (i (length owners))
 (let ((owner (aref owners i))
 (n−ships (aref n−ships−per−turn i)))
 (cond ((= owner player)
 (incf score growth))
 ((= owner opponent)
 (decf score growth)
 (when (= player 1)
 (decf score (* 0.000000000001d0
 (− (the fixnum *n−turns−till−horizon*) i)
 n−ships)))))))
 score))

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 16 / 26

Implementation: Alpha-beta?

the neutral planets are the blind spot of the
position evaluator

if the bot cannot take and keep a high
growth planet it may go and take a low
growth one leaving the �rst one to the
opponent

this can lead to quick losses

solution: alpha-beta

but there are dangers . . .

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 17 / 26

Questions? (�rst round)

Stay tuned.

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 18 / 26

Meta: Search

a walk on states of solution space (often need to record states too)

guided by heuristics in non-trivial cases

states get evaluated

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 19 / 26

Meta: Solution space

there are practically in�nite possible actions to take

a very good move generator is needed

fast evaluation of moves is needed

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 20 / 26

Meta: Development as search

Basics

version control (git)
unit testing

Evaluation

understand what and why the bot does
how much does it lose?

test playing strength

�x all bugs before moving on Often hard to distinguish genuine bugs
from algorithmic weaknesses.

Move generator

why does it lose?

analyze lots of games

greedy heuristic (good for testing)

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 21 / 26

Meta: Levels of development as search

With �nite memory, information about visited states is lost. Danger of
endless loops, making no progress.

1 think quickly just jotting down main ideas in a few words
2 talk to your rubber duck
3 expand on ideas until �executing� them in head
4 think coding, code thinking

keep a record of progress (org-mode, version control, etc)

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 22 / 26

Meta: Why Lisp?

code can be refactored quickly

no risk of having to rewrite it in another
language to speed it up

faster testing, debugging in interactive
development environment

those who can test more ideas have a big
advantage

and also those who can place more useful
bugs in the code

no, I haven't written a DSL

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 23 / 26

Meta: What to pack for a space war?

much time and energy sources

e�ective time management

a good notepad

one pack of meta-heuristics

a heap of parens

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 24 / 26

Still hungry for more?

source code repository http://quotenil.com/git/?p=planet-wars.git

the code is tested on Linux with these Common Lisp implementations:

Allegro CL (Free Express Edition:
http://www.franz.com/downloads/clp/survey)
SBCL (http://sbcl.org)

contest web site: http://ai-contest.com

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 25 / 26

http://quotenil.com/git/?p=planet-wars.git
http://www.franz.com/downloads/clp/survey
http://sbcl.org
http://ai-contest.com

Questions? (second round)

(Franz Inc.) Google AI Challenge: Planet Wars January, 2011 26 / 26

	Planet Wars

