The K? System:
Lisp at the Core of the ISP Business

Espen J. Vestre

Nextra AS

1 Introduction

The Nextra Group, a subsidiary of Telenor (the norwegian Telecom), is
Norway’s largest ISP, with over 400.000 single-user dialup accounts, a 70%
market share in the norwegian dialup market. Besides Nextra Norway, there
are subsidiaries in the Czech Republic, Slovakia, Hungary, Austria, Switzer-
land, Ttaly, Germany, Italy and Sweden.

For efficient and automated (self-service) customer service, an ISP needs
smooth integration between the different service-implementing servers, cus-
tomer service applications and billing. We have achieved this through what
we call a core system, which is responsible for authorative customer infor-
mation, username reservation, password and configuration distribution, and
SO on.

Such a core system not only needs to serve todays needs, but must be
able to adjust to the extreme speed of the internet business, both in terms
of volume growth and with respect to the introduction of new products and
services.

After evaluating and rejecting several commercial systems, we decided to
implement our own core system. The system, which we call K2 (acronym for
“Kjernesystem 2”7, meaning “Core System 2”) is a 4-, or even 5- (counting
web clients) layer client-server architecture, based on ORACLE, which has
a set of servers implemented in almost pure Common Lisp as its most vital
parts.

The decision to implement large parts of the system in Lisp was contro-
versial, but the system has proved to be very stable, very flexible, and very
scalable and efficient. The power of Common Lisp and CLOS reduced the
implementation efforts and ensured flexibility.



2 System Overview

The system consists of the following layers'

2.1 Layer 1

At the base is the “Base Camp”, an ORACLE database. There is also a
log database, running on a different machine. K?’s architecture is easily
extended to support several databases of several kinds, which all can reside
on different machines.

2.2 Layer 2

The next layer is “Sherpa” which is a simple server implemented in C. Sherpa
uses standard libraries to connect via TCP to Oracle. Sherpa provides sim-
plified access to the database and returns values in Lisp-readable format.
Each sherpa process is a single-threaded unix process. Each underlying
database (main database and log database) needs its own sherpas.

2.3 Layer 3

Layer 3 is the most important one, and is implemented entirely in Common
Lisp, using Allegro CL 5.0. At layer 3 there are 4 different multithread-
ing Lisp servers (one of which currently runs on two machines for high
availability). These servers share a large Lisp code base (and a common
S-expression-based TCP protocol), but play somewhat different roles. They
all communicate with sherpa through a pool of a configurable number of
sherpa sessions.

Hushe (High-level USer Handling Engine) provides the main interface for
entering and updating objects in the database. When fetching rows from
the database, Hushe converts them into CLOS objects representing instances
of classes corresponding to each table, e.g. “CUSTOMER” objects. Hushe
provides low-level commands for finding, fetching, storing and updating such
objects, and high-level commands for e.g. different typical ISP tasks like
creating new accounts, changing the product-type for accounts, changing
mail aliases and so on. Hushe provides a very fine-grained and configurable
security system, giving access at all levels from ordinary customers who may

!The acronyms, mostly related to the mountain K2 (Hushe is a valley close to K?in
the Karakoram), are inspired by the K 2 acronym itself and a workshop in the norwegian
mountains. . .



only do simple operations on their own account, through local administrators
in companies to our own customer care representatives and “super users”.

Indus (INcremental Distribution of User Setup) provides read-only ac-
cess to the actual configuration of the internet accounts for a variety of
services, and keeps track of changes, enabling large-scale services to keep
local password and configuration databases in sync? with K?2.

In addition there are two different servers for usage collection and real-
time information (these are still under development).

Common to the layer 3 servers is the K2 product modelling code. In
K?, each user account may be activated by one or more products. Each
product gives access to a number of services (like dialup, mail, ftp, ...).
For each product-service-pair, a service-class is assigned. Each service-class
defines a set of attributes and default values for those attributes. Thus,
different products may activate different attributes with different values.
These attributes are used by the indus clients to implement the actual level
of service and configuration for the given account. For example, our free
mail service does not include the facility to forward messages. Thus, the
forward-attribute does not appear in the mail configuration (i.e. the mail
service-class) of the free mail product, but it does occur (with an empty
default value) in all other products that include the mail service. The indus
client for mail does not have to know anything about this underlying logic. It
just configures the accounts with the set of attribute-value pairs that indus
supplies.

2.4 Layer 4

At Layer 4 there is a Lisp-based webserver (“Climb”) which is used by
customer service for interaction with K?2. This webserver implements a dy-
namic, customizable and userfriendly GUI?. The webserver manages open
TCP-sessions to Hushe (keeping one session open for each customer repre-
sentative), ensuring very quick responses to most commands.

Other users (e.g. ordinary dialup customers) access Hushe through tra-
ditional web-servers with Perl CGl-scripts or java servlets.

Numerous scripts for different tasks (e.g. mass production of accounts)
also operate at layer 4 (as Hushe clients).

2During normal operation, new accounts are activated within seconds.
3Colors, font sizes and even the language of the texts is customizable per user and “on
the fly”



3 Lisp Advantages

Originally, our plan for K? was a very modest one. We wanted to build
an intermediate system to serve our most immediate needs, and then later
have a second evaluation of the commercial alternatives. But K? has been
so successful that the original plans for a second evaluation round have been
discarded.

We think that the choice of Common Lisp as the implementation lan-
guage can account for a large part of the success of K2. Some of the most
interesting and useful features of K? are actually very dependent on unique
features of modern Lisp environments:

3.1 Flexible Product Modelling With CLOS

K?%s flexible product and service modelling is probably its most unique
feature compared to other similar system.

One problem with many conventional systems of this kind, is that sup-
port for new services has to be hardwired into the system, from database
and upwards. K2 takes a very object-oriented approach to product and ser-
vice modelling, where products and service classes are represented throgh
CLOS classes. These are stored (indirectly) in the Oracle database, and
loaded into the Lisp servers on demand (generating the classes on the fly).
Through multiple inheritance, we can very easily define new products as
combinations of existing ones, dramatically reducing implementation time.

3.2 Incremental Development on Running Servers

K? has been in constant development since its release, but still the server
processess have had runtimes of up to 3 months - during which there were
numerous bug fixes and enhancements. The servers run as background pro-
cesses, but we have integrated telnet servers into them, through which we
can connect to a real Lisp listener and patch them with “fasl”-files while
they are still “live”.

The ability to modify running code is one of the features which makes
Lisp extremely useful for “netcentric” computing: The advantage of server-
based software is even greater when the servers can be patched without even
having to notify the users in advance of scheduled disruption.

With Lisp we can have more frequent changes to the software while still
keeping very high availability.



3.3 Lisp-based webserver

A multi-threading webserver without the overhead of old-fashioned CGI is
a must for an application which has to do extensive session tracking like
the K? webserver. The dynamic capabilities and built-in threads support of
modern lisp environments make them ideal as webserver platforms.

3.4 S-expression-based TCP protocols

For interprocess communication we use S-expression-based TCP protocols.
There are Lisp, java, perl and other libraries for talking to the servers, and
through a uniform syntax with keyword-based command parameters and
keyword-plist output, adaption to new commands is very easy.

3.5 Fast Development, High Quality

K? was developed with very limited resources (with only one Lisp program-
mer until 3 months before the initial launch) in a short time, and it is still
under constant development (there are now 4 programmers working on K?2).
The garbage collection and error handling of Lisp makes it easy to keep er-
rors under control. Only very rarely do errors make the servers actually
defunct, most of the time an error in some part of K? only affects a few
users and the bug can be fixed quickly and the patch can then be loaded
into the running servers.

3.6 Other Lisp Advantages

1. Keyword arguments to functions have proven to be extremely valuable,
making it very easy to make backward-compatible changes to server
commands.

2. We make essential use of multi-methods in K2.
3. Modern Lisp environments have excellent support for multi threading.

4. Macros help making configurable parts of the code easy to read and
write.

5. Efficiency: Lisp is not what comes to everyone’s mind when consid-
ering efficiency, but we were surprised how efficiently our code runs,
especially when compared to other internal systems, both traditional
relational database applications and more modern java-based software.



4 Conclusion

Using Lisp has helped us to build a complex system with limited resources.
It enables us to continuously develop the system while avoiding “kludgy”
solutions and while keeping very high availability. Lisp has also made the
system very adaptive to changes in the business model and the spectrum of
products offered.

Encouraged by this, one of the next steps we will make, is to move even
more of the surrounding systems into Lisp.



