
H
ERE’S THE SCENARIO: ONE APPLICATION

designed for client-server operation, a
large repository of documents accessible by
that application and an even larger audience

for those documents. The audience is widely distributed,
sometimes mobile, and doesn’t have the luxury of a
managed computing environment.

In other words, we need to provide web access from
browser-equipped devices to our application server.
The client-server protocol is defined in OMG IDL
and the server is Corba-enabled. How do we approach
this task and what tools should we use?

“Java!”, “Perl!” I hear you shout. Hold on! I’m looking
for the most productive environment around. To
develop this code will require some exploration, to
make sure that access to the server is working
properly, ideally interactively. I’d like a simple
solution, and any solution involving multiple
technologies is not simple and likely to cause a
problem at some point in the project. Also, I want
to be sure that the HTML I generate is neat and
well formed.

Rediscovering Lisp
I chose Common Lisp for this exercise. Many of you
may never have heard of Lisp and some of you will
have vague recollections of an obscure language
suitable only for academic problems involving
artificial intelligence. That’s unfair. Yes, the roots of
Common Lisp are more than 40 years old. Yes, it was
and still is used for artificial intelligence work. But
it’s matured into a powerful and flexible tool suitable
for simple and complex problems. It has a full-
blown object system with the ANSI standard X3J13.

I’ve been using Franz Inc’s Allegro Common Lisp
(ACL) on Windows NT and Linux. The Linux
environment is pure command line and extremely fast,
but the Windows version offers the luxury of a
modern integrated development environment (IDE)
with debugger, inspector and GUI tools. Dedicated
Unix hackers can achieve the same effects with
emacs. The IDE didn’t play a role in this project so
I won’t describe it here.

There are two ways to operate ACL with Corba
servers. Our first version used Inter-Language
Unification (ILU) from Xerox’s Palo Alto Research
Centre. It’s a Corba-like system available with many
language bindings, including Java, C++, Python
and Common Lisp. It’s free for all uses and is
effectively supported by a mailing list. Installation on
Windows and Linux was straightforward, as was
generation of the Corba stubs using the supplied stub

generator. While this was effective, we’d prefer a
single-technology solution, which is why we turned
to Franz Inc’s Orblink add-on. This is a Corba 2.2
ORB implemented in Common Lisp. It isn’t cheap
but, as we shall see, integration is a snap.

In practice:

>(require :orblink)

This causes the Lisp environment to load the
optional Orblink package and start an Orb with default
parameters from the configuration file.

Load the IDL:

>(corba:idl “myinterface.idl”)

No separate generation of stubs is necessary. This
command parses the IDL and automatically defines
all the necessary namespaces, classes and methods
according to some straightforward rules that conform
to OMG standards.

Stringing Lisp along
As with any Corba system, we have to acquire a reference
to an object on the server to get started. In many
installations, a naming service is used (somewhat like
JNDI), but in this example we follow the common
practice of publishing the reference in string form,
using a URL. We grab the string reference from the
web server and convert into a proper object reference
(see Listing 1).

This has saved the local proxy in the variable
‘server’. We can learn a little more by using describe
(see Listing 2).

One method in the IDL allows us to log in to the
server. The IDL is:

interface CoordinatorInterface {
string login(

in string username,

64 APPLICATION DEVELOPMENT ADVISOR ● www.appdevadvisor.com

Peter Ward has been
developing powerful IT
systems for complex
business needs for over
20 years. As a consultant
for Pan Domain
(www.pandomain.co.uk),
he provides IT consultancy
to large companies with
challenging integration
problems. Peter may be
contacted at peter-
ward@bcs.org.uk

LETTERS FROM THE FRONT

● Common Lisp has matured into a
powerful and flexible tool.

● Corba integration is remarkably painless.
● Lisp dynamically generates correctly

formed HTML.
● A single-process model and native code

outperform more complex solutions.
● Incremental development is fast

and robust.

FACTS AT A GLANCE

Sometimes older languages can yield hidden treasures. Guest columnist
Peter Ward revisits Lisp and finds it invaluable for communicating with
a server running Corba IDL

Life in the old dog yet

in string password
);

};

When this is mapped into Lisp, the method is named op:login.
The first parameter is always the object (local proxy), followed by
the other parameters.

>(op:login *server* “pjw” “password”)
“IOR:000000000000003b494…000007”

This method merely returns a unique reference to a server
object that represents our session. That’s just how this server
happens to work. Now, we can translate the string to create a local
proxy and do something more interesting, such as retrieve a set of
documents from the server. You can find the IDL in Listing 3.

Document retrieval
Now we can invoke one of the methods on this object, for
example to retrieve a list of documents (see Listing 4), giving us
a set of document details hot from the server. We need to present
them in HTML through a web server. No need to leave Lisp at
this point: there are at least two web servers written completely in
Common Lisp. We must mention the excellent and extremely
powerful cl-http from John Mallery and friends at the MIT AI labs.
But for this project we are using the open sourced AllegroServe,
which provides sufficient power for our purpose and also integrates
well with ACL.

HTML generation with this web server is completely achieved
within the Lisp language, using a set of macros that effectively extend
the language to encompass HTML markup. For example, to
display the details of one document using simple paragraphs
within a table cell, we code:

(defun display-document (doc)
(html (:tr

(:td (title doc))
(:td (author doc)))))

Tags use the macro form (:tag body). This causes the leading <tag>
to be generated, the body of the macro is executed and then the
trailing </tag> is generated. Hence, malformed HTML requires
devious and perverse acts. Let’s check the code that is generated:

>(display-document (first *doclist*))
“<tr><td>My document</td><td>Pete Ward</td></tr>”

We can now generate a containing table and apply this to all
documents.

>(defun display-list (docs)
(html
(:table

(map ‘list #’display-document docs))))

That’s a nice example of the expressive power of Lisp, taking a
function that works for one instance and easily applying it to a
collection using one call. Many Lisp programmers work this
way, creating small functions that can be proven to work and then
building up more complex blocks. Optimisation is performed later,
by adding type declarations, reducing unnecessary memory
allocation and profiling the code. This incremental and highly
interactive approach is one reason why the environment is many
times more productive than C++ or Java.

To make this content available to web browsers, we have to publish
a URL. This associates the URL with a Lisp function, so that the
function doc-lister will respond when the URL /docs is accessed
(Listing 5).

Jazzing things up
This is fine so far, but the presentation is somewhat bland. How
can we take an HTML design template and blend in this dynamic
content? This area still requires some work, but for the time
being the approach is to take the web page design from any
reasonable HTML design tool and run it through the HTML parser
provided. This converts the HTML markup style into the Lisp markup
style we have seen already. It’s then straightforward to embed the
dynamic calls.

Speed is always a concern when serving dynamically generated
HTML. This solution has several points in its favour. The
implementation is faithful to the layered architecture, but has allowed
the middlemost four layers to be implemented in a single technology
and single process space. The code is fully compiled and can reasonably
be expected to outperform the equivalent Java. In the laboratory
environment, with no optimisation, the code adds a perceptible
but small overhead to the server calls. Although there is no
built-in load balancing within the Lisp environment, this
multi-tiered solution is readily scalable.

We are now awaiting the arrival of ACL version 6, which adds
what is now considered essential for any serious integration
project: secure sockets, XML extensions and tight integration with
Java classes. Don’t write off this old-timer, it’s the Charlton
Heston of programming languages – getting on in years but still
capable of delivering the goods. ■

Links
● Franz Inc: www.franz.com
● cl-http:

www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html
● AllegroServe: http://allegroserve.sourceforge.net/
● Lisp as an Alternative to Java [Erann Gat]:

www-aig.jpl.nasa.gov/public/home/gat/lisp-study.html
● ILU: ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

LETTERS FROM THE FRONT

Listing 1: Converting a string reference to an object reference
>(do-http-request “http://www.myhost/myior.txt”)
“IOR:000000000000003…0000007”
>(op:string_to_object corba:orb *)
#<COM/PANDOMAIN/COMMON/CORBAGEN:COORDINATORINTERFACE-PROXY

“´¨´0_RootPOA
>(setf *server* *)

Listing 2: Checking the object reference using the describe function
>(describe *server*)
#<COM/PANDOMAIN/COMMON/CORBAGEN:COORDINATORINTERFACE-PROXY

“´¨´0_RootPOA
is an instance of
#<STANDARD-CLASS COM/PANDOMAIN/COMMON/CORBAGEN:COORDINATORINTERFACE-PROXY>:

The following slots have :INSTANCE allocation:
JUNCTION #<ORBLINK:CLIENTJUNCTION: [212.67.199.81:7960] Idle: 180929 sec socket: NIL

@ #x20cf3e9a>
HOST “212.67.199.81”
PORT 7960
IOR #<ORBLINK::GIOP.IOP-IOR @ #x20dc86ba>
OBJECT_KEY “´¨´0_RootPOA
ORIGINAL-IOR NIL
REPOSITORY_ID ORBLINK.REPOSITORY_ID:|IDL:com/pandomain/common/corbagen/CoordinatorInterface:1.0|

Listing 3: Creating a local proxy
// idl2java idl2package ::corbaGen com.pandomain.engine.corbaGen
module com {

module pandomain {
module common {

module corbagen {

struct DocumentArray
{

llong_unbound_seq docIds;
string_unbound_seq docTitles;

};
…
interface ConcurrencyInterface {

long listDocuments(out DocumentArray ownedArray);
…
};

interface CoordinatorInterface {
string login(

in string username,
in octet_unbound_seq password

);
};

};
};

};
};
>(op:string_to_object corba:orb *)
#<COM/PANDOMAIN/COMMON/CORBAGEN:CONCURRENCYINTERFACE-PROXY

“´¨´1972059480
>(setf *engine* *)

Listing 4: Retrieving a list of documents
>(op:listdocuments *engine*)
#<COM/PANDOMAIN/COMMON/CORBAGEN:DOCUMENTARRAY
:DOCIDS #(13 18 12 0)
:DOCTITLES #(“Development Team Progress “

66 APPLICATION DEVELOPMENT ADVISOR ● www.appdevadvisor.com

LETTERS FROM THE FRONT

“API Manual” “Test whiteboard”
“Development Plan”)

@ #x21075022>

Listing 5: Associating a URL with a Lisp function
;; Make one link from id and title pair.
(defun make-document-link (id title)

(html
(:h3
((:a href (concatenate 'string “open?docid=” (princ-to-string id)))
(:princ title)))

(:hr)))

(defun list-docs-as-links (doc-array)
(map ‘list #'make-document-link

(op:docids doc-array)
(op:doctitles doc-array)))

(defun doc-lister (req ent)
(let* ((my-engine (which-engine req))

(docs (op:listdocuments my-engine)))
(with-http-response (req ent)

(with-http-body (req ent)
(html
(:h2 “Your documents”)
(list-docs-as-links owned-docs)
(signature req ent))))))

(publish :path “/docs” :content-type “text/html”
:function #'doc-lister)

LETTERS FROM THE FRONT

