
IDL/LISP MAPPING
VERSION 1.0
Franz Inc.

Copyright 1998-2001 by Franz Inc.
October 3, 2001 IDL/Lisp 1

Copyright © 1998-2001 by FRANZ INC. All rights reserverd. This is revision 2.0 of this

document..

ESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to

restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer

Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.

DRAFT PROPRIETARY TO FRANZ INC.
2 IDL/LISP

TableofContents
1 Preface . 9

1.1 Status . 9

1.2 Scope . 9

1.3 Intended audience. 10

1.4 Missing Items . 10

1.5 Conventions . 10

1.6 Version of Lisp . 10

1.7 Contact Points . 10

1.8 Acknowledgments . 10

2 Mapping and IDL . 13

2.1 Introduction to IDL. 13

2.2 How IDL is used. 13

2.3 Mapping constituents . 14

2.3.1 Mapping the primitive data types. 14

2.3.2 Mapping the constructed data types . 14

2.3.3 Interfaces . 14

2.3.4 Mapping the syntax. 15

2.3.5 Mapping the names . 15

2.3.6 Mapping pseudo-interfaces . 15

2.4 Mapping summary . 15

3 Mapping IDL to Lisp . 17

3.1 Mapping concepts. 17

3.2 Semantics of type mapping . 18
10/3/01 IDL/Lisp iii

3.3 Mapping for basic types . 18

3.3.1 Overview . 18

3.3.2 boolean . 20
3.3.3 char . 20
3.3.4 octet . 20
3.3.5 wchar, wstring . 21
3.3.6 string . 21
3.3.7 Integer types . 21

3.3.8 Floating point types . 21

3.3.9 fixed . 21
3.4 Introduction to named types . 22

3.4.1 Naming terminology . 22

3.5 Distinguished packages . 23

3.5.1 Nicknames for distinguished packages . 24

3.6 Scoped names and scoped symbols . 24

3.6.1 Definitions . 24

3.7 The package_prefix pragma . 25

3.8 Mapping for interface . 26
3.8.1 Example . 27

3.9 Mapping for operation . 27
3.9.1 Parameter passing modes . 27

3.9.2 Return values . 27

3.9.3 one-way . 28

3.9.4 Efficiency optimization: using macros instead of functions 28

3.9.5 exception . 28
3.9.6 context . 28
3.9.7 Example . 29

3.10 Mapping for attribute . 29
3.10.1 readonly attribute . 30
3.10.2 normal attribute. 30
3.10.3 Example . 30

3.11 Mapping of module. 30
3.11.1 Example . 30

3.12 Mapping for enum. 31
3.12.1 Example . 32

3.13 Mapping for struct . 32
3.13.1 Example . 33

3.14 Mapping for union. 33
3.14.1 Member accessors . 34

3.14.2 Example . 34

3.15 Mapping for const. 35
3.15.1 Example . 35

3.16 Mapping for array. 36
iv IDL/Lisp 10/3/01

3.16.1 Example . 36

3.17 Mapping for sequence . 36
3.17.1 Example . 38

3.18 Mapping for exception . 38
3.18.1 User exception . 39
3.18.2 System exception . 39

3.19 Mapping for typedef . 39
3.19.1 Example . 40

3.20 Mapping for any . 40
3.20.1 Constructors . 40

3.20.2 Typecode accessor . 40

3.20.3 value accessor. 41

3.20.4 Interaction with GIOP . 41

3.20.5 Additional examples of any usage . 42

3.21 Mapping Overview. 42

3.21.1 Rule 1: How names of types are formed . 43

3.21.2 Rule 2: How names of operations are formed 43

3.21.3 Rule 3: Lisp functions corresponding to IDL types 43

4 Mapping Pseudo-Objects to Lisp. .45

4.1 Introduction . 45

4.2 Certain exceptions . 45

4.3 Environment . 46
4.4 NamedValue . 46
4.5 NVList . 46
4.6 Context . 47
4.7 Request . 47
4.8 ServerRequest . 48
4.9 TypeCode . 48
4.10 ORB . 49

4.10.1 ORB initialization . 49

4.10.2 ORB pseudo-object . 49

4.11 Object . 51
4.12 .Principal51
4.13 DynAny . 51

4.14 The IDL Compiler . 52

5 Server-Side. .53

5.1 Introduction . 53

5.2 Mapping of native types . 53

5.3 Implementation objects . 53
10/3/01 IDL/Lisp v

5.4 Servant classes . 53

5.4.1 Note on proxies . 54

5.5 Defining methods . 54

5.5.1 Syntax of corba:define-method . 54
5.5.2 Description . 54

5.6 Examples . 55

5.6.1 Example: A Named Grid . 55

6 Design Decisions .59

6.1 Introduction . 59

6.1.1 Goals. 59

6.1.2 Lisp Version . 60

6.1.3 Reverse mapping . 61

6.1.4 Compiler interface . 61

6.1.5 Type checking . 61

6.2 Overall Design Philosophy. 61

6.2.1 Relationship to other mappings . 62

6.3 Names . 62

6.3.1 Capitalization . 62

6.3.2 Nesting . 62

6.3.3 Character set . 63

6.3.4 Alternative mappings . 63

6.3.5 Prefixes. 63

6.4 Mapping of basic types. 64

6.4.1 boolean . 64
6.4.2 float and double . 64

6.5 Mapping for struct . 64
6.6 Mapping for exception . 64

6.6.1 condition hierarchy . 64

6.6.2 Naming exception classes . 65

6.7 Mapping for enum. 66
6.8 Mapping for union . 66
6.9 Mapping of module. 66
6.10 Mapping for array . 66
6.11 Mapping for sequence . 67

6.11.1 Advantages of our proposal . 68

6.11.2 Disadvantages of our proposal . 68

6.11.3 Conclusion . 68

6.12 Mapping for any . 68
6.13 Mapping for typedef . 69
6.14 Mapping for interface . 69
6.15 Mapping for operation: the name . 69
vi IDL/Lisp 10/3/01

6.15.1 Explicit operation mapping . 70

6.15.2 Use of a designated package . 71

6.15.3 Using a prefix . 72

6.15.4 Using the :keyword package . 72

6.15.5 Conclusion . 73

6.16 operation mapping: signature . 73

6.16.1 Leave the signature of the generic function unspecified 73

6.16.2 Require method definition via a particular macro 73

6.17 operation mapping: parameter passing modes . 74

6.18 Mapping of attribute . 74
6.19 Compiler mapping . 75

6.20 Pseudo Interface Mapping . 75

6.21 Server side mapping . 75
10/3/01 IDL/Lisp vii

viii IDL/Lisp 10/3/01

Preface 1
1.1 Status

This document presents a proposed IDL/Lisp language mapping. It is being circulated

for review to interested members of the Lisp/CORBA community.

Because this document is in preliminary form, it contains a number of formatting and

editing problems:

• Some mapping features are not illustrated with examples.

• The “rationale” section may not be up-to-date with respect to the actual mapping.

• Many of the fonts are not used properly, and the document formatting has various

errors.

• Some of the examples may be out-of-synch with the current version of the mapping.

• Some of the explanations are terse to the point of being elliptical.

If the Lisp community concurs with the main ideas presented in the mapping, the

document will be edited and formatted to professional standards and submitted to the

OMG. The problems discussed above will be corrected, the design rationale section

will be shortened and placed at the beginning (although a separate document including

detailed design rationale decisions will be made available) and unclear semantic issues

will be clarified. Furthermore, appropriate front matter, such as acknowledgments and

copyright clearances will be included.

1.2 Scope

This document is intended only to deal with matters concerning the IDL/Lisp language

mapping. In particular, there are few explanatory examples and matters of launching

and use of the services are not discussed.
10/3/01 IDL/LISP 1-9

1

1.3 Intended audience

This document is intended for readers who are familiar with both IDL and with Lisp.

However, Chapter 2, “Mapping and IDL", contains a brief introduction to certain

mapping concepts, but this chapter will not be included in the version submitted to the

OMG.

1.4 Missing Items

The following topics are incompletely specified or not specified at all

• Portable Object Adaptor

• possible new PIDL and other required mappings

• DynAny type management

1.5 Conventions
IDL appears using this font.

Lisp code appears using this font.

(This usage is inconsistent in this version of the document).

1.6 Version of Lisp

This document is based on Common Lisp specified in X3J13 Committee, ANSI
X3.226-1994, American National Standard for Information Technology—Programming
Language—Common Lisp, ANSI (New York) 1994

1.7 Contact Points

Questions and comments about this document are encouraged and should be directed

to:

Technical Support

Franz Inc.

1995 University Avenue

Berkeley, CA 94704

USA

phone: 510-548-3600

fax: 510-548-8253

email: bugs@franz.com

1.8 Acknowledgments

The design of this mapping was influenced by a number of sources outside of Franz

Inc.
1-10 IDL/LISP 10/3/01

1

We used the ILU system and its mapping both for design guidance and for assessing

practical experience. We thank Bill Janssen of Xerox Parc for providing us with access

to ILU and for explicating the design decisions in the mapping used by ILU. We thank

Joachim Achtzehnter for his work on the design of ILU and for his help in preparing

this mapping document.

We would like to thank Ken Anderson of BBN for his comments on suggestions on

this mapping.

We would like to thank Greg Whittaker of Mitre Corporation for his comments and

suggestions on this mapping.

We would like to thank Stanley Knutson of Concentra for his comments.

We also used a mapping due to Thomas Mowbray of Mitre Corporation.

We are grateful for the assistance of Harlequin Inc. in preparing this mapping.
October 3, 2001 2:08 pm IDL/LISP 1-11

1

1-12 IDL/LISP 10/3/01

Mappingand IDL 2
This chapter briefly reviews some concepts of IDL and defines the notion of a language

mapping. A summary of the IDL/Lisp mapping is presented. [This chapter will not be

included in the version of this document that will be submitted to the OMG].

2.1 Introduction to IDL

IDL, or Interface Definition Language, is a language defined by the Object

Management Group.

The key data type in IDL is the interface, which describes the behavior of an objects

that implements that interface. The IDL definition for an interface describes all of the

operations to which an object that implements that interface can respond. For each

such operation, it describes the allowed types of the parameters to the operation and

the allowed type of the value returned by the operation.

IDL allows the types other than interfaces to be expressed. For example, primitive

types such as boolean, several signed and unsigned integral types, and some floating

point types may be defined.

Constructed types analogous to the C struct or Pascal record type may be defined, and

some simple type aliasing is possible in a way analogous to the C typedef construct.

Arrays and sequences may also be defined.

2.2 How IDL is used

IDL is typically used in the following manner. An server process wishes to make some

of its functionality available for invocation by clients. These clients may not be in the

same process, on the same machine, or even written in the same language.
10/3/01 IDL/LISP 2-13

2

The server publishes the IDL definitions that define the interfaces of the objects that it

implements. A client can use those definitions to invoke operations on objects that

reside within the server process.

The syntax used by the client to invoke a method on an object defined in IDL, and the

relationship between the data types specified in IDL and the native data types of the

language in which the client is implemented is defined by the mapping of IDL into that

language.

This document describes a mapping from IDL into Common Lisp.

2.3 Mapping constituents

Informally speaking we can divide a mapping into these categories.

2.3.1 Mapping the primitive data types.

IDL implicitly assumes that there is a universe of primitive data values, certain sets of

which may be denoted by IDL types.

The mapping will, for each abstract IDL data value define the associated Lisp data

value. The set of IDL data values corresponding to a particular IDL data type will

correspond to the Lisp type whose elements are the Lisp values that correspond to each

IDL value in that set.

For example, IDL has a concept of the integer constant 12. It seems reasonable that

this value would correspond to the Lisp value 12, and indeed, in our mapping, it does.

In fact, each IDL integer value corresponds to precisely one Lisp integer of the same

value.

One of IDL’s predefined types is unsigned short, which comprises the set of values

between 0 and 65535 inclusive. The Lisp type corresponding to this IDL type is thus

the set of Lisp integers between 0 and 65535, a set specified in Lisp by the type

specifier (integer 0 65535) or, equivalently, (unsigned-byte 16).

The primitive data types are boolean, double, long double, float, octet, short,
unsigned short, long, unsigned long, long long, unsigned long long, char,
string, any.

2.3.2 Mapping the constructed data types

The constructed data types are union, struct, array, exception, and sequence. These

correspond to aggregates or collections of other IDL elements. In each case we need to

determine whether such a type maps most naturally to an instance of standard-class, an

instance of structure-class, or to some other Lisp construct.

2.3.3 Interfaces

The most important data type to map is the interface data type.
2-14 IDL/LISP 10/3/01

2

2.3.4 Mapping the syntax.

How are methods on objects invoked? How are methods defined?

For example, in Lisp we would ask: does method invocation correspond to function

invocation, generic function invocation, or macro invocation? Are methods defined

using defun, defmethod, or some other syntax?

2.3.5 Mapping the names

It is necessary to assign a Lisp symbol that represents each named IDL construct. What

symbol should corresponds to a given operation, or a given interface? How are

capitalization and package-names handled?

2.3.6 Mapping pseudo-interfaces

IDL has certain constructs that behave like interfaces in some ways but that are not full

fledged interlaces. For example, ORB, the interface that describes the Object Request

Broker itself, is a pseudo-interface. These are typically mapped separately.

2.4 Mapping summary

Most of the material in this mapping document concerns fairly esoteric issues that

rarely arise in practice. The main points of our mapping are as follows.

Primitive data types are mapped to corresponding primitive data types in Lisp.

struct and union are mapped to classes. Each member of the struct or union can be

accessed using a regular syntax.

Arrays map to arrays.

Sequences can map either to lists or to vectors; that is, sequences map to sequences.

Exceptions are mapped to conditions.

Interfaces are mapped to classes, and interfaces that inherit map to classes that inherit.

Operations on interfaces map to methods on a generic function. This generic function

discriminates only on its first argument, which is the interpreted as the receiver of the

operation.

The module in which an IDL entity is declared is mapped to the package name of the

corresponding symbol. The name of the symbol is formed from the rest of the scope of

the module.

A mapping to the IDL compiler is included.
October 3, 2001 2:08 pm IDL/LISP 2-15

2

2-16 IDL/LISP 10/3/01

Mapping IDLtoLisp 3
This section describes the mapping of IDL into the Lisp language.

The rationale for design decisions can be found in Chapter 6, “Overall Design

Rationale".

In most cases examples of the mapping are provided. It should be noted that the

examples are code fragments that try to illustrate only the language construct being

described.

3.1 Mapping concepts

By an IDL entity we mean an element defined in some IDL file.

For example, consider the code fragment

module A {
interface B {

void op1(in long bar);
};

}

The IDL entities are the module named “A”, the interface named “B”, the operation

named “op1”, the formal parameter named “bar”, and the primitive data types void
and long.

Our mapping will associate to each IDL entity declared in a an IDL specification a

corresponding Lisp entity.

The Lisp entity corresponding to a given IDL entity will be said to be generated from

the IDL entity.
10/3/01 IDL/LISP 3-17

3

If the IDL entity has a name then the corresponding Lisp entity will also have a name.

Whereas IDL entities are named by strings (i.e., identifiers), Lisp entities are named by

symbols.

It is the goal of this chapter to specify, for each IDL construct, the Lisp entity, and the

name of that entity, that is generated by the mapping.

3.2 Semantics of type mapping

The statement that an IDL type I is mapped to a Lisp type L indicates if V is a Lisp

value whose corresponding IDL type I, then the consequences are not specified if the

value of V is not a member of the type L.

For example, if V is passed as an parameter to an IDL operation or if V is returned

from an IDL operation, then a conforming implementation may reasonably perform

any of the following actions if V is not of the type L.

• If V may be coerced to L, then V may be replaced by the result of coercing V to the

type L.

• If V cannot be coerced to L, then an error may be signalled. If the error occurs

during marshalling or unmarshalling, corba:marshal should be signaled.

3.3 Mapping for basic types

3.3.1 Overview

The following table shows the basic mapping.

The first column contains the IDL name of the IDL type to be mapped. Each IDL type

denotes a set of IDL abstract values.

The set of values denoted by an entry in the first column will be mapped under the

mapping described in this document to a set of Lisp values. That set of Lisp values is

described in two ways:

• The entry “Name of Lisp type” is a symbol that names the type represented by this

set of Lisp values.
3-18 IDL/LISP 10/3/01

3

• The entry “Lisp type specifier” is a standard Common Lisp type specifier that

denotes this set of Lisp values.

Figure 3-1 BASIC TYPE MAPPINGS

Additional details are described in the sections following.

IDL Type
Name of Lisp
type Lisp type specifier

boolean corba:boolean boolean

char corba:char character

wchar corba:wchar see text

octet corba:octet (unsigned-byte 8)

string corba:string string

wstring corba:wstring see text

short corba:short (signed-byte 16)

unsigned short corba:ushort (unsigned-byte 16)

long corba:long (signed-byte 32)

unsigned long corba:ulong (unsigned-byte 32)

long long corba:longlong (signed-byte 64)

unsigned long long corba:ulonglong (unsigned-byte 64)

float corba:float see text

double corba:double see text

fixed corba:fixed see text
October 3, 2001 2:08 pm IDL/LISP 3-19

3

3.3.1.1 Example

(typep -3 ‘corba:short)
> T

(typep -3 ‘corba:ushort)
> nil

(typep “A string” ‘corba:string)
> T

3.3.2 boolean

The IDL boolean constants TRUE and FALSE are mapped to the corresponding Lisp

boolean literals T and nil. The type specifier corba:boolean specifies this type.

3.3.3 char

IDL char maps to the Lisp type character. The type specifier corba:char specifies this

type.

3.3.3.1 Usage example

(typep #\x ‘corba:char)
> T

(typep “x” ‘corba:char)
> nil

3.3.4 octet

The IDL type octet, an 8-bit quantity, is mapped as an unsigned quantity to the type

corba:octet The type specifier corba:octet denotes the set of integers between 0 and

255 inclusive. This set can also be denoted by the type specifier (unsigned-byte 8).
3-20 IDL/LISP 10/3/01

3

3.3.4.1 Usage example

(typep 255 ‘corba:octet)
> T
(typep -1 ‘corba:octet)
> nil

3.3.5 wchar, wstring

The types wchar and wstring are mapped to Lisp types named corba:wchar and

corba:wstring. The type corba:wstring must be a subtype of corba:sequence whose

constituents can elements of type corba:wchar.

3.3.6 string

The IDL string, both bounded and unbounded variants, are mapped to string. Range

checking for characters in the string as well as bounds checking of the string shall be

done at marshal time. The type specifier corba:string denotes the set of Lisp strings.

3.3.6.1 Usage example

(typep “A string” ‘corba:string)
> T
(typep nil ‘corba:string)
> nil

3.3.7 Integer types

The integer types each map to the Lisp integer type. Each IDL integer type has a

corresponding type specifier that denotes the range of integers to which it corresponds.

The names of the type specifiers are corba:long, corba:short, corba:ulong,

corba:ushort, corba:longlong, and corba:ulonglong.

3.3.8 Floating point types

The floating point types float, double, and long double map to Lisp types named

corba:float, corba:double and corba:longdouble respectively. These types must be

subtypes of the type real. They must allow representation of all numbers specified by

the corresponding CORBA types.

3.3.9 fixed

The fixed point type is mapped to the lisp type named corba:fixed. This type must be

a subtype of the lisp type rational.
October 3, 2001 2:08 pm IDL/LISP 3-21

3

3.4 Introduction to named types

We now discuss the mapping of types that are named. We begin with a discussion of

terminological issues.

3.4.1 Naming terminology

Notation for naming can be confusing, so some care is needed. Our specification is not

formally rigorous, but we have tried to illustrate enough points with examples so that

situations likely to arise in practice can be handled.

3.4.1.1 IDL naming terminology

By the IDL name of an IDL entity we mean the string that is the simple name of that

entity.

An IDL entity can be declared at the top-level or nested inside some other IDL entity.

We say that the outer IDL entity encloses the inner one.

We will sometimes elide the quotation marks in describing the names of IDL (and

other entities) when no confusion is likely to result.

IDL Example

module A{
interface B{

struct c {long foo;};};}

The name of the struct is the string “c”. The name of the interface is the string “B”.

The name of the module is the string “A”. The name of the struct member is the

string “foo”. The innermost enclosing IDL entity of the struct is the interface named

“B”. The innermost enclosing module of the struct is the module named “A”.

3.4.1.2 Lisp naming terminology

The name of a symbol is a string used to identify the symbol.

Packages are collections of symbols. A symbol has a home package, which also has a

name. A package can be named by a symbol or a string. We sometimes loosely say

“the package x” when we mean “the package named by x”. A package may have

nicknames and we will consider that the nicknames of a package name the package.

Unless otherwise stated, we will assume that distinct package names refer to distinct

packages.
3-22 IDL/LISP 10/3/01

3

Symbols are notated by prefixing the name of the home package of the symbol to the

character ‘:’ to the name of the symbol. Case is not significant when this notation is

used.

Thus, all symbols generated by this mapping are external symbols of their home

package.

A symbol can name a function, a package, a class, a type, a slot, or a variable. These

namespaces are disjoint.

All alphabetic characters in the names of symbols used in this document are upper-case

unless otherwise stated.

Thus, the names notated here are implicitly converted to uppercase when they name a

symbol.

For example, when we write

the symbol named hello-goodbye

or

the symbol hello-goodbye

we actually mean the symbol whose name is the string “HELLO-GOODBYE”.

3.5 Distinguished packages

This document will refer to to kinds of packages:

• The first kind comprises those packages defined explicitly by this specification.

• The second kind of package comprises those packages created as a result of

compiling user IDL code.

The first kind of packages consists of these three distinct packages: the root package,

the corba package, and the operation package.

The names of these packages are described below.

The name of the root package is the string “OMG.ORG/ROOT”.

The name of the corba package is “OMG.ORG/CORBA”.

The name of the operation package is the string “OMG.ORG/OPERATION”.

The precise semantics of these three packages is described below. Informally, the root

package is the package in which Lisp names corresponding to IDL definitions not

contained in a top-level module are interned. The corba package is the package in

which Lisp names corresponding to IDL definitions and pseudo-IDL definitions in the

CORBA module are interned. The operation package is the package into which names

of Lisp functions corresponding to IDL operations are interned.

In addition, this specification makes use of the standard Common Lisp packages

named “KEYWORD” and “COMMON-LISP”.
October 3, 2001 2:08 pm IDL/LISP 3-23

3

3.5.1 Nicknames for distinguished packages

An implementation is expected to support the addition of nicknames for a package via

the standard common lisp nicknames facility. An ORB should support the following

default nicknames:

• For the package “OMG.ORG/CORBA” the default nickname shall be “CORBA”.

• For the package “OMG.ORG/OPERATION” the default nickname shall be “OP”.

This document will use these nicknames without comment.

3.6 Scoped names and scoped symbols

Many of the Lisp entities we consider will be named according to the scoped naming

convention described in this section. In particular, the following entities will be

mapped according to this naming convention:

• interface

• union

• enum

• struct

• exception

• const

• typedef

A scoped symbol will be associated with the IDL entity, and it is this scoped symbol

that will name the Lisp value generated by the given IDL entity.

3.6.1 Definitions

For any named IDL entity I there is a Lisp symbol S called the scoped symbol of I.

The scoping separator is the string “/”.

If I is a top-level module, then the name of S is the name of I.

If I is a module nested within another module J, then the name of S is the

concatenation of the name of the scoped symbol of J, the scoping separator, and the

name of I.

The home package of the scoped symbol of a module is :keyword.

Suppose I is a named IDL entity that is not a module. The name of the scoping

symbol S of I is determined as follows.

If the declaration of I is enclosed inside another IDL entity J that is not a module,

then the name of S is the concatenation of the name of the scoping symbol for J, the

scoping separator, and the name of I. Otherwise the name of S is the name of I.
3-24 IDL/LISP 10/3/01

3

If I is enclosed in a module M then the home package of S is named by the scoped

symbol for M. Otherwise the home package for S is the root package.

3.6.1.1 Examples of scoping symbols

First we consider a simple example:

IDL

module a {
interface foo {};}

The scoped symbol of the module is :a. Thus, the home package of this symbol is

:keyword and the name of the symbol is the string “A”.

The scoped symbol of the interface is the symbol a:foo. Thus, the name of the symbol

is the string “FOO” and the home package of the symbol is the package whose name is

the string “A”.

IDL

module a {
interface outer {

struct inner {
in long member;};};}

Here the scoped symbol for the module is :a, the scoped symbol for the interface is

a:outer, and the scoped symbol for struct is a:outer/inner.

IDL

module a{
module b{

interface c{
struct d{

long foo;};};};}

The scoped symbol for the struct is a/b:c/d. The scoped symbol for the struct
member is a/b:c/d/foo.

3.7 The package_prefix pragma

A package_prefix pragma has the form

#pragma package_prefix string

where string is an IDL string literal. For example
October 3, 2001 2:08 pm IDL/LISP 3-25

3

#pragma package_prefix “COM.FRANZ-”

A package_prefix pragma affects the mapping of all top-level modules whose

definition textually follows that pragma in the IDL file: the name of the scoping

symbol for such a top-level module is the concatenation of the given package_prefix
with the name of the module.

All OMG system IDL files, such as the IDL files for CORBA Services and CORBA

facilities, are considered to have been defined with an implicit package_prefix of

“OMG.ORG/” . This name and convention was chosen to be consistent with the way in

which system repository ID specifiers are determined. Packages corresponding to

modules within the scope of such an implicit package_prefix will have default

nicknames that are the name of the module without any prefix.

IDL
#pragma package_prefix “COM.FRANZ-”
module a{

module b{
interface c{};};};

The scoped symbol for the interface is COM.FRANZ-A/B:C.

3.8 Mapping for interface
An IDL interface is mapped to a Lisp class. The name of this class is the scoped

symbol for the interface.

The direct superclasses of a generated Lisp class are determined as follows. If the

given IDL interface has no declared base interfaces, the generated class has the single

direct superclass named corba:object.

Otherwise, the generated Lisp class has direct superclasses that are the generated

classes corresponding to the declared base interfaces of the given interface.

The Lisp value nil can be passed wherever an object reference is expected.

An IDL interface is also mapped into server side classes. The server classes are

described in the chapter on Server Side mapping.
3-26 IDL/LISP 10/3/01

3

3.8.1 Example

3.8.1.1 IDL

module example{
interface foo {};
interface bar {};
interface fum : foo,bar {};}

3.8.1.2 generated Lisp

(defclass example:foo(corba:object)())
(defclass example:bar(corba:object)())
(defclass example:fum (example:foo example:bar)())

3.9 Mapping for operation
This section discusses only how the user is to invoke mapped operations, not how the

user is to implement them. The implementation of operations is discussed in the server

chapter.

An IDL operation is mapped to a Lisp function named by the symbol whose print-

name is given by the name of the operation interned in the operation package.

We will assume that all operation names have been appropriately imported into the

current package in the examples.

Thus, when an example is given in which there is a reference to the symbol naming the

mapped function corresponding to an IDL operation, the package of that symbol will

be assumed to be the operation package. Common Lisp provides a number of facilities

for the implementation of this functionality and for handling name conflicts; we expect

in addition the ORBs will provide various convenience functions for this.

3.9.1 Parameter passing modes

The function defined by the IDL operation expects actual arguments corresponding to

each formal argument that is declared in or inout, in the order in which they are

declared in the IDL definition of the operation.

3.9.2 Return values

The function defined by the IDL operation returns multiple values. The first (i.e., the

zeroth) value returned is that value corresponding to the declared return value, unless

the declared return value is void. Following the value corresponding to the declared

return value, if any, the succeeding returned values correspond to the parameters that

were declared out and inout, in the order in which those parameters were declared in

the IDL declaration.
October 3, 2001 2:08 pm IDL/LISP 3-27

3

Note that this implies that generated functions corresponding to operations declared

void which have neither out nor inout formal parameters return zero values.

3.9.3 one-way

Operations declared oneway are mapped according to the above rules.

3.9.4 Efficiency optimization: using macros instead of functions

A conforming implementation may map an operation to a macro whose name and

invocation syntax are consistent with the above mapping. For the sake of

terminological simplicity, however, this document will continue to refer to mapped

operations as “functions”.

3.9.5 exception

An invocation of a function corresponding to a given IDL operation may result in the

certain conditions being signalled, including the conditions generated by the

exceptions declared in the raises clause of the operation, if any. Such conditions are

signalled in the dynamic environment of the caller.

An invocation of a function may also result in the signalling of conditions

corresponding to system exceptions.

3.9.6 context

For each context name declared by an operation, the mapped function accepts a

corresponding keyword argument whose name is the name of that context name. If two

context names differ only in case, then the corresponding keywords have names

identical to the context names, i.e., without case translation. Otherwise, case

translation is performed as usual.
3-28 IDL/LISP 10/3/01

3

3.9.7 Example

3.9.7.1 IDL

module example {
interface face {

long sample_method (in long arg);
void voidmethod();
void voidmethod2(out short arg);
string method3 (out short arg1,inout string arg2,in boolean arg3);

};

3.9.7.2 generated Lisp

(defpackage :example)
(defclass example:face(corba:object)())
;...

3.9.7.3 usage

; Suppose x is bound to a value of class example:face.

(sample_method x 3)
> 24

(voidmethod x)
> ; No values returned

(voidmethod2 x)
> 905 ; This is the value corresponding to the out arg

(method3 x “Argument corresponding to arg2” T)
> “The values returned” -23 “New arg2 value”

; The Lisp construct multiple-value-bind can also be used to recover these values.

(multiple-value-bind (result arg1 arg2)
 (method3 x “Argument corresponding to arg2” T)
(list result arg1 arg2))

> (“The values returned” -23 “New arg2 value”)

3.10 Mapping for attribute
attribute is mapped using a naming convention similar to that for operation.
October 3, 2001 2:08 pm IDL/LISP 3-29

3

3.10.1 readonly attribute

An attribute that is declared with the readonly modifier is mapped to methods

whose name is the name of the given attribute and whose home package is the

operation package.

This method is specialized on the class corresponding to the IDL interface in which the

attribute is defined.

3.10.2 normal attribute

attributes that are not declared readonly are mapped to a pair of methods that follow

the convention used for default slot accessors generated by defclass.

Specifically, a reader-method is defined whose name follows the convention for

readonly attributes. A writer is defined whose name is (setf name) where name is

the name of the defined reader-method.

3.10.3 Example

3.10.3.1 IDL

module example{
interface attributes {

attribute string attr1;
readonly attribute long attr2;};}

3.10.3.2 Usage

;; Assume x is bound to an object of class example:attributes
(attr2 x)
> 40001
(attr1 x)
> “Sample”
(setf (attr1 x) “New value”)
(attr1 x)
> “New value”

3.11 Mapping of module
An IDL module is mapped to a Lisp package whose name is the name of the scoped

symbol for that module.

3.11.1 Example
3-30 IDL/LISP 10/3/01

3

3.11.1.1 IDL

interface outer_interface {};

module example {
interface inner_interface {};
module nested_inner_example {...

interface nested_inner_interface{};
module doubly_nested_inner_example{...};

};
}

3.11.1.2 generated Lisp

(defpackage :example)
(defpackage :example/nested_inner_example)
(defpackage :example/nested_inner_example/doubly_nested_inner_example)

(defclass omg.root:outer_interface...)
(defclass example:inner_interface ...)
(defclass example/nested_inner_example:nested_inner_interface ...)

3.12 Mapping for enum
An IDL enum is mapped to a Lisp type whose name is the corresponding scoped

symbol.

Each member of the enum is mapped to a symbol with the same name as that member

whose home package is the keyword package.
October 3, 2001 2:08 pm IDL/LISP 3-31

3

3.12.1 Example

3.12.1.1 IDL

module example{
enum foo {hello, goodbye, farewell};

};

3.12.1.2 generated Lisp

(defpackage :example)

(deftype example:foo ()
‘(member :hello :goodbye :farewell))

3.12.1.3 usage

(typep :goodbye ‘example:foo)
> T
(typep :not-a-member ‘enumexample:foo)
> nil

3.13 Mapping for struct
An IDL struct is mapped to a Lisp class whose name is the corresponding scoped

symbol. Each member of the struct is mapped to an initialization keyword, a reader,

and a writer.

The initialization keyword is a symbol whose name is the name of the member and

whose package is the keyword package.

The reader is named by a symbol that follows the conventions for attribute accessors.

In the case of a reader its package is the operation package, and its name is the name

of the member.

The writer is formed by using setf on the generalized place named by the reader.

The type corba:struct is defined to be the union of all such generated types.

An IDL struct has a corresponding constructor whose name is the same as the name of

mapped Lisp type. This constructor takes keyword arguments whose package is the

keyword package and whose name equals the name of the corresponding member.
3-32 IDL/LISP 10/3/01

3

3.13.1 Example

3.13.1.1 IDL

module structmodule{
struct struct_type {

long field1;
string field2;
 };};

3.13.1.2 generated Lisp

(defpackage :structmodule)
(defclass structmodule:struct_type (corba:struct)

((field1 ...)
 (field2 ...)))

3.13.1.3 usage

(setq struct (structmodule:struct_type
:field1 100000
:field2 “The value of field2”))

(field1 struct)
> 100000

(setf (field1 struct) -500)
(field1 struct)
> -500

3.14 Mapping for union
An IDL union is mapped to a Lisp class named by the the corresponding scoped

symbol. This class inherits from corba:union

The value of the discriminator can be accessed using the accessor function named

union-discriminator whose home package is the operation package and an

initialization argument named :union-discriminator.

The value can be accessed using the accessor function named union-value in the

operation package with initialization argument :union-value.

An IDL union has a corresponding constructor whose name is the same as the name of

the type. This constructor takes two constructors whose names are :union-value and

:union-discriminator.
October 3, 2001 2:08 pm IDL/LISP 3-33

3

3.14.1 Member accessors

Each union member has an associated constructor and accessor.

The symbol-name of the name of the constructor corresponding to a particular member

is the concatentation of the name of the union constructor to the scoping separator to

the name of the member. The home package of the name of the constructor

corresponding to a particular member is the home package of the name of the union

constructor.

A constructor corresponding to a member takes a single argument, the value of the

union. The discriminator is set to the value of the first case label corresponding to that

member.

It is an error if a member reader is invoked on a union whose discriminator value is not

legal for that member. The member writer sets the discriminator value to the first case

label corresponding to that member.

The default member is treated as if it were a member named default whose case labels

include all legal case labels that are not case labels of other members in the union.

3.14.2 Example

3.14.2.1 IDL

module example {
 enum enum_type {first,second,third,fourth,fifth};

union union_type switch (enum_type) {
case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;

}; };
3-34 IDL/LISP 10/3/01

3

3.14.2.2 generated Lisp

(defpackage :example)
(defclass example:union_type (corba:union)

(...))

3.14.2.3 Usage

(setq union (example:union_type
:union-discriminator :first
:union-value -100000))

(union-value union)
> -100000
(union-discriminator union)
> :FIRST
(setq same-union (example:union_type/win -100000))
(union-discriminator same-union)
> :FIRST
(setf (show same-union) 3)
(union-discriminator same-union)
> :THIRD
(show same-union)
> 3
(setf (default same-union) nil)
(union-discriminator same-union)
> :FIFTH

3.15 Mapping for const
An IDL const is mapped to a Lisp constant whose name is the scoped symbol

corresponding to that const and whose value is the mapped version of the

corresponding value.

3.15.1 Example

3.15.1.1 IDL

module example {
const long constant = -321;

};
October 3, 2001 2:08 pm IDL/LISP 3-35

3

3.15.1.2 Generated Lisp

(defpackage :example)
(defconstant example:constant -321)

3.16 Mapping for array

An IDL array is mapped to a Lisp array of the same rank. The element type of the

mapped array must be a supertype of the Lisp type into which the element type of the

IDL array is mapped.

Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the same

dimensions.

3.16.1 Example

3.16.1.1 IDL

module example {
 typedef short array1[2][3];
 interface array_interface{
 array1 op();}}

3.16.1.2 Generated Lisp

 (defpackage :example)
(deftype example:array1 () (array (2 3)))
;; mapping for the interface...
(defclass example:array_interface...)

3.16.1.3 usage

(setq a2 (op x)) ; Get an array
(aref a2 0 1) ; Access an element
> 3 ; Just an example, could be any value that is a short

3.17 Mapping for sequence
An IDL sequence is mapped to a Lisp sequence. Bounds checking shall be done on

bounded sequences when they are marshaled as parameters to IDL operations.

An implementation is free to specify the type of the mapped list more specifically.
3-36 IDL/LISP 10/3/01

3

Suppose foo is an IDL data type and let L be the corresponding Lisp type.

This means that anywhere a parameter of type sequence<foo> is expected, either a

vector all of whose elements are of type L or a list all of whose elements are of type L
may be passed.

Conversely, when such a sequence is returned from an operation invocation, this

document specifies no type restriction on the returned value other than that it is a

sequence all of whose elements are of type L.

In practice, it is likely that an ORB will marshal and unmarshal sequence as

appropriately specialized vector unless the user provides specific information that

this behavior is not desired.

This specification describes a number of functions created by the IDL mapping whose

name is a symbol in the IDL package: union member accessors, struct member

accessors, attribute accessors, operation mappings, and so on. Whenever such a

function is defined, two auxiliary functions are also defined, a list-coercer and a vector-
coercer. The name of the list-coercer is the concatenation of the name of the original

function to the string “-LIST”; the name of the vector-coercer is the concatenation of

the name of the original function to the string “-VECTOR”; each function name has

home package of the operation package.

The effect of invoking the list-coercer corresponding to a particular function on

arguments is equivalent to the effect of coercing the result of invoking the original

function on the given arguments to the type list; similarly for the effect of invoking the

vector-coercer on arguments.
October 3, 2001 2:08 pm IDL/LISP 3-37

3

3.17.1 Example

3.17.1.1 IDL

module example {
 typedef sequence< long > unbounded_data;
 interface seq{
 boolean param_is_valid(in unbounded_data arg);
};
};}

3.17.1.2 Generated Lisp

(defpackage :example)
(defun unbounded_data_p (sequence)
 (and (typep sequence ‘sequence)
 (every #’(lambda(elt)

 (typep elt ‘corba:long)))

(deftype example:unbounded_data()
 ‘(satisfies unbounded_data-p))

; Let x be an object of type example:seq

(param_is_valid x ‘(-2 3))
> T

(param_is_valid x #(-200 33))
> T

3.18 Mapping for exception
Each IDL exception is mapped to a Lisp condition whose name is the scoped symbol

for that exception. User exceptions inherit from a condition named

corba:userexception. exception is a subclass of serious-condition.

Figure 3-1 Condition hierarchy for CORBA exceptions

corba:userexception corba:systemexception

corba:exception

condition

t

serious-condition
3-38 IDL/LISP 10/3/01

3

System exceptions inherit from a condition named corba:systemexception.

Both corba:userexception and corba:systemexception inherit from the condition

corba:exception.

3.18.1 User exception

The reader functions and initialization arguments for a condition generated by an IDL

exception follow the convention for the mapping of IDL structs.

3.18.1.1 Example

IDL

module example {
exception ex1 { string reason; };

};

; generated Lisp
(defpackage :example)
(define-condition example:ex1 (corba:userexception)
 ((reason :initarg :reason ...))

; Usage example

(error (example:ex1 :reason “Example of condition”))

3.18.2 System exception

The standard IDL system exceptions are mapped to Lisp conditions that are

subclasses of corba:systemexception. Such generated conditions have reader-

functions and initargs consistent with the IDL definition of these exceptions.

3.19 Mapping for typedef
IDL typedef is mapped to a Lisp type whose name is the scoped symbol

corresponding to that typedef.

This name of this type denotes the set of Lisp values that correspond to the Lisp type

that is generated by the mapping of the IDL type to which the typedef corresponds.
October 3, 2001 2:08 pm IDL/LISP 3-39

3

However, it is not required to perform recursive checking of the contents of

constructed types like array, sequence, and struct.

3.19.1 Example

3.19.1.1 IDL

module example{
typedef unsigned long foo;
typedef string bar;

3.19.1.2 generated Lisp

(defpackage :example)
(deftype example:foo () ‘corba:unsigned-long)
(deftype example:bar() ‘string)

3.19.1.3 Usage example

(typep -3 ‘example:foo)
> nil
(typep 6000 ‘example:bar)
> nil
(typep “hello” ‘example:bar)
> T

3.20 Mapping for any
The IDL type any represents an IDL entity with an associated typecode and value. It

is mapped to the type corba:any, which encompasses all Lisp values with a

corresponding typecode.

3.20.1 Constructors

The constructor corba:any takes two keyword arguments named any-value and any-
typecode. If any-typecode is specified, then any-value must be specified. If any-value
and any-typecode are each specified then any-value must be a member of the type

denoted by any-typecode.

An any may also be created via the invocation

(corba:any :any-typecode val :any-value type).

3.20.2 Typecode accessor

The actual typecode of a Lisp value v is defined as follows.
3-40 IDL/LISP 10/3/01

3

If v was created by an invocation of corba:any, then the actual typecode of v is the

any-typecode argument supplied to corba:any.

If v is a nonnegative integer than the actual typecode of v is the the typecode that

describes the first Lisp type among (corba:octet, corba:ushort, corba:ulong,
corba:ulonglong) of which v is a member.

Otherwise if v is a negative integer then the actual typecode of v is that typecode that

describes the first Lisp type among (corba:short, corba:long, corba:longlong) of

which v is a member.

Otherwise if v is a member of corba:float or corba:double then the actual typecode of

v is corba:tc_float or corba:double respectively.

Otherwise if v is a member of corba:boolean then the actual typecode of v is

corba:boolean.

Otherwise if v is a char then the actual typecode of v is corba:tc_char.

Otherwise if v is a string designator then the actual typecode of v is corba:tc_string.

Otherwise if v is an array then then the actual typecode of v a typecode describing an

array compatible with the contents of v.

Otherwise if v is a list then the the actual typecode of v is a typecode describing a

sequence compatible with the contents of v.

Otherwise v must be an instance of corba:object, corba:struct or corba:union and the

actual typecode is the typecode describing the exception, interface, struct, or

union of which v is an instance. (Such a v is said to be self-typing).

(any-typecode v) is defined to resolve to the actual typecode of v.

3.20.3 value accessor

If v is a number, a string, a sequence, a boolean, or an instance of corba:enum,

corba:object, or corba:struct then (any-value v) evaluates to a value that is eql to v.

Otherwise, if v is an any created via a call to the corba:any constructor, then (any-
value v) resolves to the any-value specified in that call.

Otherwise the ORB may signal a CORBA:BAD_PARAM exception. This might be

necessary, for example, if the ORB received an any containing an instance of a struct
type for which it does not have enough static information to construct a value of that

type. In this case, the value of the any can be accessed through the DynAny pseudo

interface.

3.20.4 Interaction with GIOP

For the purpose of GIOP marshalling, a Lisp entity is considered to have the typecode

and value corresponding to its actual typecode and actual value.
October 3, 2001 2:08 pm IDL/LISP 3-41

3

For example, consider the following IDL:

module example{
interface any_example{

void foo (in any val);};}

Now suppose that x is bound to a proxy for a remote implementation of the

example::any_example interface and suppose requests are forwarded over GIOP

to the remote object.

An invocation

(foo x 3)

will forward to the remote implementation a request to invoke the “foo” method with

single parameter an any whose typecode is the typecode for octet and whose value is

the integer 3.

However, an invocation

(foo x (corba:any :any-typecode corba:tc_longlong :any-value 3))

will forward to the remote implementation a request to invoke the “foo” method with

single parameter an any whose typecode is the typecode for long long and whose

value the integer 3.

Thus, the default coercion rules for any may be overridden as necessary.

Furthermore, the DynAny pseudo interface provides an alternative way to access the

values in an any.

3.20.5 Additional examples of any usage
(any-typecode 3)
> <octet typecode>
(any-typecode -1)
> <short typecode>
(any-typecode “foo”)
> <string typecode> ; could also be typecode for an array.
(any-value “foo”)
> “foo”
(any-value nil)
> nil
(any-typecode nil)
> <typecode for boolean>

3.21 Mapping Overview

The detailed mapping guidelines for specific types was designed to conform to a small

set of uniform principles.
3-42 IDL/LISP 10/3/01

3

3.21.1 Rule 1: How names of types are formed

If an IDL identifier I names a type at the top level of some module named M, then the

corresponding Lisp type is named M:I, that is, the symbol in package M whose name

is the string “I”.

Nested types are separated by the character “/”. Thus, if there is another type J defined

within the scope of the type named by I, the corresponding Lisp symbol is M:I/J. This

retains consistency with the way in which repository ID’s are formed.

3.21.2 Rule 2: How names of operations are formed

The rule for operation package mapping is simpler: All symbols that correspond to

Lisp functions that correspond to IDL operations are interned in a single package. This

package can be denoted by “OP”. Thus, op:foo denotes the operation named foo.

3.21.3 Rule 3: Lisp functions corresponding to IDL types

IDL defines many kinds of types: unions, structs, interfaces, exceptions.

We can think of each of each of these types, informally, as denoting entities with

“named slots”. For example, the “named slots” of a struct, union, or exception are its

members; the “named slots” of an interface are its attributes.

For each IDL type, there is an associated constructor function that creates a value of

that type and there are accessors for each member.

3.21.3.1 The constructor function

The constructor function corresponding to a type is identical to the (fully scoped) name

of the type. It takes keyword initialization arguments whose names are the names of

the named members of that type; these initialize the given members.

3.21.3.2 Accessing the members

Each “named slot” defines two functions: a reader and a writer. The reader has the

same name as the “named slot”. The writer uses the standard (setf name) convention

familiar to Lisp users. Of course, the home package of the reader is, as for all such

function names, the package OP.

3.21.3.3 Notes

In applying Rule 3, it is important to note that not all of the associated functions make

sense for all of the types. For example, there is obviously no constructor function

defined for an interface, nor are there writer functions defined for attributes declared

readonly.
October 3, 2001 2:08 pm IDL/LISP 3-43

3

3-44 IDL/LISP 10/3/01

MappingPseudo-Objects toLisp 4
4.1 Introduction1

Pseudo-objects are constructs whose definition is usually specified in “IDL”, but

whose mapping is language specified. A pseudo-object is not (usually) a regular

CORBA object.

For each of the standard IDL pseudo-objects we either specify a specific Lisp language

construct or we specify it as a pseudo interface.

We have chosen the option allowed in the IDL specification section 4.1.3 to define

Status as void and have eliminated it for the convenience of Lisp programmers.

A Pseudo-object differs from a regular CORBA object in the following ways:

• It is not represented in the Interface Repository.

• It may not be passed as a parameter to an operation expecting a CORBA Object.

• It may not be returned as a CORBA Object.

• It may not be stored in an any.

• It may not be safely subclassed by user code, if it is represented as a class.

4.2 Certain exceptions

The standard CORBA PIDL uses several exceptions, Bounds, BadKind, and

InvalidName.

(define-condition corba:bounds (corba:userexception)...)

1.This chapter has not been fully updated from the 2.1 pseudo IDL to the 2.2 pseudo IDL.
10/3/01 IDL/LISP 4-45

4

(define-condition corba:typecode/badkind(corba:userexception)...)
(define-condition corba:typecode/bounds(corba:userexception)...)
(define-condition boa:invalidname (corba:useexception)...)

4.3 Environment
The Environment is used in request operations to make exception information

available.

Since conditions in Lisp are first class objects, we see no reason not to define

Environment simply as an exception:

(deftype corba:environment() ‘corba:exception)

4.4 NamedValue
A NamedValue describes a name, value pair. It is used in the DII to describe

arguments and return values, and in the context routines to pass property, value pairs.

We map this as if it were a normal struct as specified by the IDL using the IDL in

module CORBA:

typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN =1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const FLAGS CTX_RESTRICT_SCOPE = 15;

struct NamedValue{
Identifier name;
any argument;
long len;
Flags arg_modes;}

4.5 NVList
A NVList is used in the DII to describe arguments and in the context routines to

describe context values. An NVList is mapped to an object of class CORBA:NVList
whose pseudo-IDL is given below.
4-46 IDL/LISP 10/3/01

4

pseudo interface NVList {
 readonly attribute unsigned long count;
 NamedValue add (in Flags flags);
 NamedValue add_item (in Identifier item_name, in Flags flags);
 NamedValue add_value (in Identifier item_name,

in any val,
in Flags flags);

 NamedValue item (in unsigned long index) raises (CORBA::Bounds);
 void remove (in unsigned long index) raises (CORBA::Bounds);

4.6 Context
A Context is used in the DII to specify a context in which context strings must be

resolved before being sent along with the request invocation.

It is mapped to a class corba:context whose operations are as specified in the PIDL

for this class.

pseudo interface Context {
readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child (in Identifier child_ctx_name);
void set_one_value (in Identifier propname, in any propvalue);
void set_values (in NVList values);
void delete_values (in Identifier propname);
NVList get_values (in Identifier start_scope,

in Flags op_flags,
in Identifier pattern);

4.7 Request
A Request is mapped to an instance of class CORBA:request according to the IDL:
October 3, 2001 2:08 pm IDL/LISP 4-47

4

typedef sequence<Exception> ExceptionList;
typedef sequence<Context> ContextList;
pseudo interface Request {

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
reaodnly attribute ContextList contexts;
attribute Context ctx;
any add_in_arg();
any add_named_in_arg (in string name);
any add_inout_arg();
any add_named_inout_arg(in string name);
any add_named_out_arg(in string name);
void set_return_type(in TypeCode tc);
any return_value();

void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

4.8 ServerRequest
ServerRequest is used in the DSI. It is to be mapped according to the IDL to the

Lisp class named CORBA:ServerRequest.
pseudo interface ServerRequest{

Identifier op_name();
Context ctx();
void params (in NVList parms);
void result (in any res);
void except (in any ex);

4.9 TypeCode
The deprecated parameter and param_count methods are not mapped.

A TypeCode is an instance of the class named CORBA:TypeCode. It follows the

pseudo IDL below.
4-48 IDL/LISP 10/3/01

4

enum TCKind{
tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double,
tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string, tk_sequence, tk_array, tk_alias,
tk_except, tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar, tk_wstring,
tk_fixed};

pseudo interface TypeCode {
exception Bounds{};
exception BadKind{};

boolean equal (in TypeCode tc);

//for objref, struct, union, enum, alias, and except
TCKind kind();
RepositoryId id() raises (BadKind);
Identifier name() raises (BadKind);

//for struct, union, enum, and except
unsigned long member_count() raises (BadKind);
Identifier member_name(in unsigned long index) raises (BadKind, Bounds);

//for struct, union, and except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

//for union
any member_label(in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type() raises (BadKind);
long default_index() raises (BadKind);

//for string, sequence, and array
unsigned long length() raises (BadKind);
TypeCode content_type() raises (BadKind);

4.10 ORB

4.10.1 ORB initialization

An ORB is initalized via the ORB_init pseudooperation in the CORBA module:

This pseudooperation simply takes as argument various implementation-defined

keywords.

4.10.2 ORB pseudo-object

The ORB is mapped according to its pseudo-IDL definition. This includes the

following IDL:
October 3, 2001 2:08 pm IDL/LISP 4-49

4

pseudo interface ORB {
exception InvalidName{};
typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
ObjectIdList list_initial_services();
Object resolve_initial_references(in ObjectId object_name)

raises(InvalidName);

string object_to_string (in Object obj);
Object string_to_object (in string str);

NVList create_list(in long count);
NVList create_operation_list(in OperationDef oper);
NamedValue create_named_value(in String name, in any value, in Flags

flags);
Context get_default_context();
void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
Request get_next_response();

//typecode creation

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_union_tc(
in RepositoryId id,
in Identifier name,
in Typecode discriminator_type,
in UnionMemberSeq members);

Typecode create_enum_tc(
in RepositoryId id,
in Identiifer name,
in EnumMemberSeq members);

TypeCode create_alias_tc(
in RepositoryId id,
in Identifier name,
in TypeCode original_type);

TypeCode create_exception_tc(
in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_interface_tc(
in RepositoryId id,
4-50 IDL/LISP 10/3/01

4

in Identifier name);

TypeCode create_string_tc (in unsigned long bound);
TypeCode create_wstring_tc (in unsigned long bound);
TypeCode create_recursive_sequence_tc (

in unsigned long bound,
 in unsigned long offset);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type)

4.11 Object
The IDL Object type is mapped to the class corba:object. It supports the operations

defined in the pseudo-IDL for this type.

The is_nil pseudo operation is mapped to a function named op:is_nil which may be

applied to the lisp value nil.

The duplicate and release pseudo-operations are unnecessary in the Lisp mapping

and are not mapped.

pseudo interface Object{
void create_request(

in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);

InterfaceDef get_interace();
boolean is_nil();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
unsigned long hash (in unsigned long maximum);

4.12 Principal
The Principal interface is deprecated and is not mapped.

4.13 DynAny

The DynAny pseudo interface is mapped according to its pseudo IDL without any

modification. A DynAny is an instance of the class corba:DynAny.
October 3, 2001 2:08 pm IDL/LISP 4-51

4

4.14 The IDL Compiler

The IDL compiler uses the following top-level pseudo-IDL definition in the CORBA
module:

typedef string pathname_designator;
Repository idl (pathname_designator path);

The Lisp mapping is to the function named corba:idl that takes a single argument, a

pathname designator for an IDL source file.

The effect of invoking corba:idl on a pathname designator is to define within the Lisp

world all data types, packages, proxies, and stubs defined by the denoted IDL file. This

may entail redefining classes or types.

If the Lisp mapping requires that package named P be created, and there is already a

package Q with P as one of its names or nicknames in the current Lisp world, then the

package Q is used everywhere the package named P is required. Previously existing

symbols interned in Q, or other attributes of Q such as the packages it uses, are not

affected. However, if a symbol is interned in, but not exported by, Q, and if the

mapping requires this symbol be external, its visibility is appropriately modified as a

result of the corba:idl mapping.

The object returned is an object of type corba:repository and represents an Interface

Repository representing the IDL file given as input. The precise semantics of this

representation is implementation dependent, although it should contain objects at least

that represent each definition in the input IDL file, unless it returns nil.

Implementations may freely add additional keywords to corba:idl to express additional

functionality. For example, the implementation may augment this specification with

keywords to describe the names of packages into which IDL entities are mapped, the

visibility of symbols, and preprocessor directives.
4-52 IDL/LISP 10/3/01

Server-Side 5
5.1 Introduction

This chapter discusses how implementations create and register objects with the ORB

runtime.

5.2 Mapping of native types

Specifically, the native type PortableServer::Servant is mapped to the Lisp class

named. PortableServer:Servant. The native type

PortableServer::ServantLocator::Cookie is mapped to the Lisp type

PortableServer:ServantLocator/Cookie.

5.3 Implementation objects

An implementation of an IDL interface I corresponding to a Lisp class named I should

inherit, directly or indirectly, from the classes named I and PortableServer:Servant.

5.4 Servant classes

An interface corresponding to a class named by a Lisp symbol s with package p and

name n may be implemented by extending the class named by the symbol whose

package is p and whose name is the concatenation of n to the string “-SERVANT”.

For each attribute in the interface, the associated servant class has a slot whose

name is the name of the attribute and whose home package is the operation package.

If the interface has no base interfaces, then the associated skeleton class has as direct

superclasses the class corresponding to the given interface and the class named

corba:servant.
10/3/01 IDL/LISP 5-53

5

Otherwise, if the interface has base interfaces named A, B, C... then its associated

servant class has as direct superclasses the class corresponding to the given interface

and the servant classes corresponding to A, B, C...

5.4.1 Note on proxies

An ORB that supports proxies is encouraged to use a similar inheritance hierarchy for

proxies, with “servant” replaced by “proxy” in all generated classes above. This is

intended to help allow more portable auxiliary method definition.

5.5 Defining methods

The only portable way to implement an operation on a servant class is by use of the

corba:define-method macro.

The syntax of corba:define-method is intended to follow as closely as possibly the

syntax of the Lisp defmethod macro.

5.5.1 Syntax of corba:define-method
corba:define-method function-name {method-qualifier}* corba-specialized-lambda-
list form*

function-name::= {operation-name | (setf operation-name)}
operation-name:: symbol
method-qualifier::={:before | :after | :around}
corba-specialized-lambda-list ::= setf-lambda-list | normal-lambda-list
setf-lambda-list ::= (argument-specifier receiver-specifier)
normal-lambda-list ::= (receiver-specifier {parameter-specifer}* context-list)
context-list ::= {} | {&key {context-identifier}+}
context-identifier ::= symbol
receiver-specifer ::= (receiver-name receiver-class)
receiver-name ::= symbol
receiver-class ::= symbol
parameter-specifier ::= symbol

5.5.2 Description

This corba:define-method macro is used to implement an operation on an interface.

operation-name is a symbol whose name is the name either of an operation or of an

attribute declared in an IDL interface implemented by the class named by the symbol

receiver-class.
5-54 IDL/LISP 10/3/01

5

The number of parameter-specifiers listed in the normal-lambda-list must equal the

combined number of in and inout parameters declared in the signature of the

operation denoted by the function-name, or 0 if the operation is an attribute. If the

function-name is a list whose car is setf, the corresponding operation-name should

name an attribute that is not readonly.

If function-name denotes an operation, then the effect of corba:define-method is to

inform the ORB that requests for the operation on instances of the class receiver-class
should return the value or values returned by the body forms of the define-method
macro, executed in a new lexical environment in which each parameter-specifier is

bound to the actual parameters and in which each context-identifer is bound to the

value of the corresponding context variable.

The operation of corba:define-method in the case in which function-name names an

attribute is analogous.

The behavior of auxiliary specifiers and of dispatch is the same as their corresponding

action under defmethod.

Note that the syntax of corba:define-method is a strict subset of that of defmethod:

every legal corba:define-method invocation is also a legal defmethod invocation. The

main difference between them is that corba:define-method only allows specialization

on the first argument.

An implementation is free to extend the syntax of corba:define-method, for example to

allow type-checking, interlocking, or multiple dispatch.

5.6 Examples

5.6.1 Example: A Named Grid

The first example shows how one might encapsulate a “named-grid”, which is a grid of

strings.

5.6.1.1 IDL

This is the IDL of the interface to a named grid of strings.
October 3, 2001 2:08 pm IDL/LISP 5-55

5

module example{
interface named_grid{

readonly attribute string name;
string get_value (in unsigned short row,

 in unsigned short column);
void set_value (in unsigned short row,

 in unsigned short column,
 in string value);

}

5.6.1.2 Generated Lisp code

The IDL compiler might generate a class corresponding to the

example::named_grid interface using code something like this:

(defpackage :example)
(defclass example:named_grid(corba:object)())

5.6.1.3 Servant class

In order to implement the IDL interface, the user would extend the class

example:named_grid-servant.
5-56 IDL/LISP 10/3/01

5

;;Sample implementation of named_grid
(defclass grid-implementation (example:named_grid-servant)
 (

(grid :initarg :grid
 :initform (make-array ‘(2 3) :initial-element “Init”)))

5.6.1.4 Implementation of the IDL operations

The corba:define-method macro is used to define the methods that implement each of

the operations defined in the IDL interface. Note that the reader method and initarg cor-

responding to the attribute name was already defined by the servant.

These implementations do not perform any argument or range checking, which a pro-

duction system would, of course, perform.

The implementation is free to define other methods on the class, including print-object
methods and auxiliary methods for initialize-instance.

(corba:define-method get_value ((the-grid grid-implementation)
 row
 column)

(aref (slot-value the-grid ‘grid) row column))

(corba:define-method set_value ((the-grid grid-implementation)
row
column
value))

(setf (aref the-grid row column) value))

5.6.1.5 Usage example

Once the implementation class is defined, it can be instantiated and its instances

treated as a normal CLOS object. In particular, such instances can be passed to remote

ORB servers which expect an object implementing the IDL named_grid interface.

The invocation of the methods corresponding to IDL operations does not depend on

whether the object is an instance of the servant class or is simply a proxy for another

object (perhaps implemented in another language).

This usage example does not discuss registration of the object with the ORB.
October 3, 2001 2:08 pm IDL/LISP 5-57

5

; create a named grid

(setq grid (make-instance ‘example:grid-implementation :name “Example of a
grid”)

(name grid)

> “Example of a grid”

(set_value grid 0 1 “Hello”)
> ; No values returned
(get_value grid 0 1)
> “Hello”
5-58 IDL/LISP 10/3/01

DesignDecisions 6
The purpose of this chapter is to explain and to justify the reasoning behind the design

choices made. For each key design decision, we discuss alternative proposed decisions

or alternative considered design decisions.

This chapter is not normative and is not intended to be included in the finally approved

mapping document.

6.1 Introduction

The overall goal of our mapping design was to make a successful Lisp mapping. We

wanted the mapping to be widely used in Lisp applications and to be supported by

multiple vendors.

We began by studying the existing mappings and in particular determining which

mappings appeared to be successful and which did not, and why. We also tried to

identify characteristics of Lisp that make it well-suited or ill-suited to use in a CORBA

environment. We tried to make sure that our mapping could exploit the traits of Lisp

that were well-suited to a CORBA environment while minimizing the traits that were

not well-suited to a CORBA environment.

6.1.1 Goals

Within the constraint of faithfully representing IDL semantics, we attempted to satisfy

a number of design goals.

6.1.1.1 Ease-of-use

CORBA systems are often cross-platform, cross-language, and cross-vendor. Their

development presents certain unavoidable difficulties for the programmer. Our aim was

to make the Lisp ORB as simple to use as possible. We strove for a system in which

common idioms could be expressed concisely and in which common defaults were
10/3/01 IDL/LISP 6-59

6

chosen. For example, the skeleton classes automatically generates slots for attributes,

operation invocation syntax can be very concise. The any mapping chooses reasonable

defaults for most cases, although means to override the defaults are given.

6.1.1.2 Consistent

A crucial design goal was that our mapping be as easy to learn to use as possible even

for users not expert in Lisp or in CORBA. To achieve this, we aimed for a mapping as

consistent as possible.

Attributes or attribute-like values are always mapped the same: to keyword initializers

and to accessors with the same name as the attribute. This holds whether or not the

attribute-like value corresponds to a true IDL attribute, to a struct member, to a union

member, or to an exception member. Constructed types always have a constructor of

the same name.

6.1.1.3 Flexibility

The mapping should facilitate the production of flexible and dynamically modifiable

code. CLOS auxiliary methods and smart proxies are supported; run-time code

modification based on dynamically computed repositories is supported.

6.1.1.4 Performance

The features described here should not impose undue performance overhead.

6.1.1.5 Adherence to IDL

We adhere to IDL conventions as much as possible, even when specifying pseudo-

interfaces.

6.1.2 Lisp Version

The term “Lisp” is often used colloquially to refer to “Lisp-like”

languages—interpreted, high-level, dynamic languages with customizable

syntax—such as Scheme or various variants of Common Lisp.

By “Lisp” we will mean exclusively “Common Lisp” as specified by the in X3J13

Committee, ANSI X3.226-1994, American National Standard for Information
Technology—Programming Language—Common Lisp, ANSI (New York) 1994.

In particular, we do not rely on features that were not present in the ANSI standard.

We discuss here three such features that are commonly encountered.
6-60 IDL/LISP 10/3/01

6

6.1.2.1 Meta-object protocol

Although production Lisp systems support the meta-object protocol as described in Art

of the Meta-object Protocol (MOP), this protocol was not standardized by X3J13.

Therefore, we have been careful to insure that implementation or use of the mapping

here in no way relies on portions of the MOP not formally approved by X3J13.

6.1.2.2 Multithreading

The X3J13 group did not standardize multiprocessing or concurrency semantics for

Lisp, although again all production Lisp systems do include such features. We have

therefore not specified a specific multi-processing interface.

6.1.2.3 Case-sensitivity

Some vendors of Lisp support “case-sensitive” Lisps of various flavors. This document

does not address this issue.

6.1.3 Reverse mapping

We have not considered explicitly reverse-mapping issues.

6.1.4 Compiler interface

The interface to the compiler is part of the specification so that portable programs can

be written that invoke the compilation process.

6.1.5 Type checking

We did not specify in most cases that a particular exception be raised if incorrectly

typed values are passed to an array, mostly for reasons of simplicity and efficiency of

implementation. Of course, an implementation is encouraged to provide as much type-

checking as feasible.

6.2 Overall Design Philosophy

In evaluating the suitability of committing the standard to a particular design decision,

we considered the following:

• Is the decision natural in light of IDL notation and semantics?

• Is the decision natural in view of other languages’ mappings? How did other

languages’ mapping treat this problem?

• Does the decision allow reasonable performance?

• Is our decision easy to learn and to remember? Is it consistent with other design

decisions in the Lisp mapping?
October 3, 2001 2:08 pm IDL/LISP 6-61

6

6.2.1 Relationship to other mappings

We relied particularly on three mappings: the C++ mapping, the Java mapping, and the

Smalltalk mapping.

The C++ mapping is important because it is one of the most comprehensive mappings

and because IDL is very close to C++ in semantic model.

The Java mapping was one of the most recent, is very popular, and is easy to use.

The Smalltalk mapping is one of the most straightforward and consistent of the

mappings.

However, we are aware of and studied the C mapping and the Ada mapping. We felt

the C mapping was useful primarily as an example of what to avoid: although general

and efficient, it is so complicated to use that few ORBs support it.

For example, our any mapping follows the Smalltalk mapping philosophy. Our DII

mapping, however, follows the Java mapping.

On the other hand, our handling of names follows the IDL convention for repository

ID’s rather than the Java convention (again, the C convention was rejected as

incomplete).

6.3 Names

There are several differences between the IDL and the Lisp namespaces.

6.3.1 Capitalization

IDL identifiers are case-sensitive, but two identifiers differing only in case are not

allowed to occupy the same namespace.

Although Lisp symbols are also case-sensitive, in practise it is often inconvenient to

notate in a Lisp program symbols whose names contain lower-case alphabetic

characters, since the Lisp reader by default converts lower-case characters to upper-

case characters in symbol names.

Therefore, we have chosen to convert implicitly all IDL identifiers to upper-case.

However, we follow the customary usage of X3J13 in notating symbols using mixed-

case—typically lower-case—characters.

6.3.2 Nesting

The IDL namespace is deeply nested, although there is only a single “root” namespace.

There are many disjoint Lisp namespaces, each of which is essentially bilevel. We

chose to partition the IDL namespaces into a module portion and a non-module

portion.
6-62 IDL/LISP 10/3/01

6

6.3.3 Character set

Lisp symbols typically have names comprising 8-bit characters. However, certain

characters, such as the space character, are difficult to work with in practice since they

must be escaped for the default Lisp reader.

The situation for IDL identifier is not as clear for the following reasons:

6.3.3.1 International characters

The CORBA 2.1 specification, as has previous CORBA specs, explicitly allows a

number of ISO-Latin characters that are not standard ASCII alphabetic characters, such

as ß, Æ, and È.

However, no other mapping of which we are aware has provision for mapping symbols

containing such characters. In order to remain compatible with existing ORBs, we

chose to allow only standard alphanumeric characters and the underscore character in

IDL identifiers.

6.3.3.2 Other special characters

Lisp allows punctuation characters such as “/”, “-” and “.” to be part of the character

name, while IDL does not. We exploit this fact in a number of instances to avoid the

possibility of name clashes.

6.3.3.3 Keywords

Lisp does not have reserved words in the usual sense (although the bindings of certain

symbols may not be changed). Therefore, we did not require rules for avoiding clashes

with reserved keywords. On the other hand, we did not consider here the issue of

generated Lisp package names conflicting with user or system package names. We

expect that options may be provided to the compiler to avoid this problem.

6.3.4 Alternative mappings

It would have been possible to choose a name mapping that produced names more

familiar to Lisp users. For example, hyphens could have been inserted at case

transitions, or underscores could have been converted to hyphens.

6.3.5 Prefixes

We provided a package_prefix pragma in order to avoid clashes between IDL

module names and generated Lisp package names.
October 3, 2001 2:08 pm IDL/LISP 6-63

6

6.4 Mapping of basic types

The mapping for most of the basic types is fairly straightforward, although character-

set issues are discussed above.

There are questions in certain cases, however:

6.4.1 boolean

We considered mapping this type to the Lisp values defined by generalized boolean,

which is easier to use in certain cases, but mapping to boolean was simpler.

6.4.2 float and double

In practice Lisp vendors use IEEE format to represent floating point numbers, but

because this representation is not required by the ANSI standard, we chose our

mapping to be independent of this.

6.5 Mapping for struct
An alternative mapping would map an IDL struct directly into a structure-object, an

object created by the macro defstruct. Another reasonable mapping would have been

to map a struct into a class whose slot accessors obeyed the naming rules for

defstruct accessors. We chose to maintain consistency with the naming convention for

attribute in our mapping.

Furthermore, this makes the format of the accessors for exception more uniform, as it

can simply follow the struct format.

However, we have chosen our mapping so that a structure-class implementation would

not be precluded; we do not insist that corba:struct be a subclass of standard-class,

since for some compilers it could be the case that implementing a corba:struct as a

structure-object would allow a performance improvement.

6.6 Mapping for exception
Clearly IDL exception should be mapped to Common Lisp condition.

Nevertheless, there were several design issues that arose

6.6.1 condition hierarchy

It seemed clear that the Lisp condition corresponding to CORBA user exception and

CORBA system exception would derive from a common base class named

corba:exception.
6-64 IDL/LISP 10/3/01

6

However, it is not clear from which of the standard Lisp condition classes the

corba:exception class would most appropriately derive directly

We considered these options as candidates for the direct superclass of

corba:exception:

• condition, the base class for the Lisp condition system

• error, the base class for errors.

• serious-condition.

We quickly rejected simple-error, simple-condition, and warning as candidates.

The most familiar condition to signal for Lisp programmers would probably be error,

but the specification does not support this usage.

In particular, the ANSI spec [p. 9-11] states that “The type error consists of all

conditions that represent errors” where an “error” as used in the last word refers to “a

situation in which the semantics of a program are not specified, and in which the

consequences are undefined.” We felt that this was too strong a usage for the certain

cases of exceptions that are raised.

On the other hand, a serious-condition is one which is “serious enough to require

interactive intervention if not handled [X3J13 p. 9-10].” This seems like a more

appropriate match, and it is the one we chose.

It would certainly be a reasonable mapping for corba:exception to inherit directly

from condition. However, we think that exceptions should be signaled using the Lisp

error function and not the signal function.

The question of the direct superclass of corba:exception affects the behavior of

condition handlers in whose scope such a condition is signalled, hence the importance

of specifying carefully this class.

6.6.2 Naming exception classes

We chose to name the classes corresponding to system and user exceptions

corba:systemexception and corba:userexception respectively. This naming convention

is consistent with the mapping of Java and of C++.

However, the IDL for the enum types corresponding to exception used in the IDL

for the GIOP uses an underscore to separate the words: corba_exception and

user_exception, and so corba:system_exception and corba:user_exception would be

an appropriate alternative mappings.

6.6.2.1 Member accessors

We chose a convention for member accessors consistent with that for struct, except

that of course there were no writer functions defined since conditions are immutable.

However, if the struct mapping were to change we would reconsider this mapping.
October 3, 2001 2:08 pm IDL/LISP 6-65

6

6.7 Mapping for enum
A Lisp symbol in the :keyword package usually fill the role of enum in C-like

languages. This mapping has the disadvantage, however, that such values are not self-

typing in the sense that they do not encode the name of the enum of which they are a

member.

We could have chosen a self-typing mapping as well—languages like Java have two

mappings for enum, for example—but we chose not to do so.

6.8 Mapping for union
An alternative mapping would map the union to a base class and each of the branches

to concrete subclasses.

We eventually decided to follow closely the Java union mapping, again to shorten the

learning curve.

A simpler alternative would have been to map a union to a cons whose car holds the

discriminator and whose cdr holds the value. However, we felt it was reasonable to

maintain the same naming convention for all corba accessor functions.

6.9 Mapping of module
The IDL module is a name-scoping mechanism in IDL whose corresponding Lisp

equivalent is the package. Some separators need to be used between namespace

identifiers, since the Lisp package system is not nested.

We chose not to rely on automatic importing of symbols in a package corresponding to

an outer module into the package corresponding to the inner module, as we felt the

potential for confusion outweighed the gain in concision.

Because we are using “/” as a separator for names of components of a nested

namespace, we felt the name of the mapping of top-level types should begin with “/”.

By default, therefore, top-level modules are in fact mapped to the package whose name

is /, although idl or /idl are reasonable alternatives.

The “/” separator was chosen instead of the “.” separator because that is the separator

used by IDL as a scoping separator in repository IDs. However, the “.” is more familiar

in this context, since it is used as a scoping separator in the Java mapping, and we are

considering modifying the mapping to use “.” as the scoping separator character.

6.10 Mapping for array
An IDL array is mapped to a Lisp array. It would be reasonable to specify formally

the declared :element-type of the mapped Lisp array, but for simplicity we chose not to

in this document.

There is a potential ambiguity in dealing with nested arrays. Consider the following

IDL definitions
6-66 IDL/LISP 10/3/01

6

// IDL
typedef short a [2];
typedef a b[3];
typedef short c[2][3];

In the mapping, c would be mapped to a 2-dimensional array, but b would be mapped

to a one-dimensional array of arrays. These data structures are disjoint in Lisp and are

not accessed using the same syntax.

The problem is that the definition of ArrayDef in the interface repository only allows

one-dimensional arrays (although the element type can be array). Thus, it might be

necessary to map b into a Lisp two-dimensional array of integers as well, so as to

interoperate unambiguously with other interface repositories.

Because there are known problems with the treatment of interface repositories in

CORBA, we chose not to consider the impact of this problem at this time.

6.11 Mapping for sequence
This draft chooses to map IDL sequence to the Lisp type sequence.

There are several possible alternative mappings.

6.11.0.1 sequence-to-list

The simplest mapping to use and to explain is probably the mapping that maps

sequence to list. Unfortunately, such a mapping has substantial performance

overhead for cases where the element types are small, such as in the ubiquitous

sequence<octet>. More important, the list data type simply fails to capture

gracefully the intended use of sequence in certain applications.

6.11.0.2 sequence-to-vector

Another natural mapping is for sequence to go to vector. Although this is an

appropriate mapping in cases where the sequence elements are small and the

sequence size does not change often, it is less appropriate to use when the sequence
is intended to be modified in size or constructed dynamically.

Of course it would be possible in such cases to map sequence to adjustable array
with fill pointers. These are a subtype of array which permitting run-time size

modification. Although such arrays are useful in certain applications, they are

nevertheless less flexible and are more difficult to use than the list datatype for many

purposes.

6.11.0.3 Hybrids

Some proposed mappings have generally mapped sequence to list, but have mapped

to array in certain special cases, e.g. when the elements are small.
October 3, 2001 2:08 pm IDL/LISP 6-67

6

6.11.1 Advantages of our proposal
• Our proposal is the simplest to use of all the proposals in the common case where

the user is writing a client that passes a parameter for which the corresponding

parameter was declared as a sequence. Indeed, the client can simply use lists or

arrays in the application code, whichever is more convenient.

• Our proposal is more efficient than the sequence-to-list in cases where the

element types are small or where vector is the better data type.

• Our proposal is simpler and more flexible than the hybrid proposal, since there is

not artificial demarcation that the user must remember between the mapping

conventions.

6.11.2 Disadvantages of our proposal
• Our proposal is more difficult to use than the other possibilities in the case where a

sequence is a return parameter of an operation, since the client does not know

the type of the sequence.

• Our proposal is somewhat more complicated to explain than either the sequence-

to-vector or the sequence-to-list proposal, since sequence is not used as often as

list or vector alone.

• Our proposal is slightly more complicated for the implementor of a method, since

the method body must be prepared to expect an arbitrary sequence (or a syntax in

the method definition must allow this conversion to be done automatically).

• Our proposal can lead to problems in verifying the correctness of code that does not

correctly handle sequences passed to it; code might fail to work only on certain

types of sequences.

• Our proposal imposes a small run-time overhead associated with type-checking of

the passed value.

6.11.3 Conclusion

It is certainly tempting to fix the mapping of sequence either to vector or to list.

However, we believe that the availibility of both vector and list data-types in Lisp is

quite useful; fixing on either one would constrain functions for which the other would

be better suited.

6.12 Mapping for any
In the case of any, there are several issues to consider: convenience, generality, and

accessors.

The any mapping was chosen so that Lisp values can be passed back and forth from

operations expecting an any without undue manual coercions, particularly in the

common cases where a primitive type is passed.
6-68 IDL/LISP 10/3/01

6

The special handling of string designators was chosen to avoid ambiguity in passing

enum values.

The coercions were chosen so that the typecode would denote the “smallest”

containing type in some sense. However, for the sake of implementation simplicity, a

list can be passed as sequence<any> rather than sequence<type> where type is

some smaller superset of the types of the contents of the list.

This semantics was chosen particularly to facilitate passing nested lists of primitives.

6.13 Mapping for typedef
It seems clear that a typedef should map to a Lisp type that contains at least all the

values that could be in the range of the mapping of the original IDL type aliased by the

given typedef. However, whether these sets should coincide—whether a value not in

the range mapping should not be in the appropriate type—is problematic for

constructed types: how far should the type specifier peer into the object?

These cases arise particularly in handling the mapping for array, sequence, struct,
and union. It is particularly problematic in the latter two cases since the type specifier

is defined automatically from the name of the class defining the struct or union.

In order to simplify the exposition, we do not mandate special type-checking beyond

checking.

6.14 Mapping for interface
We chose to map IDL interface into class.

One alternative would have been to define our own IDL-like object system, for

example using a system like flavors. Although the resulting code would have been

closer to the object model of IDL, we rejected it as being insufficiently Lisp-like.

Another alternative would have been to require that the metaclass of such mapped

classes be a particular metaclass, corba:metaclass. Although this approach would yield

an elegant and flexible mapping, we rejected it because we did not want to rely on

nontrivial features of the MOP in this mapping.

We required implementation classes to inherit from a class named corba:servant. It

might be more consistent with the POA to name this class portableserver:servant,
however.

6.15 Mapping for operation: the name

The proposed operation mapping is the most unusual of our proposals, and it diverges

from previous mapping proposals. Therefore, it is worth exploring in some detail our

motivation.
October 3, 2001 2:08 pm IDL/LISP 6-69

6

First, we decided that since interface was mapped to class it would be natural to map

operation to method.

We rejected an invocation syntax that relied on macro expansion as these tend either to

fail or to be extremely cumbersome when used with apply, funcall, and related higher-

order functions.

The operation package name was a crucial choice. A short name would run the risk of

conflicts with user packages; a longer name would be cumbersome.

We chose to support both: the ORB supports a long name, “OMG.OPERATION” by

default, but it must support, not only the standard nickname, but even a sort of “super-

nickname” of keyword.

We rejected an invocation syntax that relied on reader-macros as being baroque.

However, an implementation may, of course, define its own reader macros to

ameliorate some of the syntactic awkwardness associated with parts of our mapping.

6.15.1 Explicit operation mapping

The most obvious mapping was in fact the mapping chosen by previous Lisp

mappings: Simply map the operation to a function or method whose name is the fully

scoped name of the operation, and which takes as first argument the receiver, as in the

following example. (Actually the most obvious mapping simply disregards name-clash

and package issues entirely).

//IDL
module example{

interface foo{
long op1(in short arg);};}

generated Lisp
(defmethod example:foo/op1 ((this example:foo) arg)
 ; implementation)

(example:foo/op1 foo-instance 32)

(Of course, the specific naming conventions—whether the operation was named

example:foo/op1 or example/foo:op1 or example.foo:op1, is orthogonal to the

considerations here.)

This mapping has certain clear advantages:

• It is easy to describe and to explain.

• It models the IDL semantics closely.

• It is easy to implement.
6-70 IDL/LISP 10/3/01

6

• It does not require special method-definition macros—method implementation can

be done using standard Common Lisp macros.to which it is mapped.

6.15.1.1 Encapsulation violation

It forces an invocation of a method on an object to know in precisely which superclass

the method was declared. This violates the spirit of object-orientation and obviates

certain kinds of polymorphic code.

6.15.1.2 Ease-of-use problems

While class names and type names are used fairly infrequently in code, method names

are used often, particularly during interactive development. To require use of a fully-

scoped name in each case would be cumbersome and inflexible.

6.15.2 Use of a designated package

Why not just say

(op1 x 3)

in the above example?

Mostly because it is not clear in what package op1 should reside.

It cannot be the package named example for a similar reason to that in the above case:

an interface could inherit an operation from two distinct interfaces in different

modules.

Now it seems like we will be OK if we define all operations in the same, fixed,

package. Suppose we choose a package named IDL. Then our example becomes:

(idl:op1 x 3)

This is a workable solution, but there are still some problems:

6.15.2.1 Importing

We cannot simply import the idl package, since the name of an operation may (and

often does) conflict with the name of some symbol in the common-lisp package.

To require the user to shadow explicitly each conflict seems unwieldy, as the Lisp

package system interacts with shadowing in ways that are notoriously counterintuitive.

Thus, this solution requires the explicit prefix of a package before each method

invocation. This gets tiresome, particularly in an interactive environment.
October 3, 2001 2:08 pm IDL/LISP 6-71

6

6.15.2.2 Conflict

This would conflict with user usages of the same package.

6.15.3 Using a prefix

The problem of importing, above, can be resolved to some extent by requiring each

operation to use a specific character prefix, such as “.” or “/”. While in C++ one might

write

x.op1(3)

in Lisp we would write,

(.op1 x 3)

where the .op1 operation was imported from the idl package.

The problem with this is that importing symbols in an IDL environment is a procedure

fraught with difficulty. The .op1 symbol would be interned at read time, and if the IDL

file declaring the operation had not been loaded correctly, or if it failed to declare the

op1 operation, subtle bugs could arise. Of course it would be possible to check for

certain of these bugs, but matters could still get confusing.

6.15.4 Using the :keyword package

Since we have seen that dynamic import of symbols generated by the IDL compiler

can lead to subtle bugs, why not simply use a simple, well-known package? The

canonical such package in Lisp is :keyword. This would enable us to write:

(:op1 x 3)

This seems concise and unambiguous (although we have still not discussed signature

issues). Indeed, it is a perfectly reasonable solution. It does have three disadvantages,

however:

6.15.4.1 Appearance

Some Lisp users have complained that this convention makes a method invocation look

too much like a keyword usage.

We also rejected hybrid solutions based on combining keyword mapping with a prefix,

as the resulting names looked awkward.

6.15.4.2 Name conflict

It could conflict with a user’s usage of the function-value of a :keyword symbol.
6-72 IDL/LISP 10/3/01

6

6.15.5 Conclusion

We thus were led to the solution we proposed, which allows the very concise :keyword

usage without prejudicing other names for the package.

6.16 operation mapping: signature

We have chosen our naming convention for operations by process of elimination, but

we are not yet done.

It would be most natural to map the operation op1 into a generic function named op1
in the operation package.

Thus, we would like to be able to implement the method op1 on a particular interface

via a syntax such as:

(defmethod op1 ((receiver example:bar) arg)
;...implementation code
)

Unfortunately, CLOS mandates the restriction that the methods of a single generic

function have congruent lambda lists, which obviates this approach, since it would

prevent the implementation of another interface’s operation named op1 that happened

to take more than a single parameter.

We could skirt this restriction by defining a metaclass for op1 different from standard-
generic-function, but we chose not to rely on the MOP, as stated above.

In practice, we chose a two-pronged approach to the problem.

6.16.1 Leave the signature of the generic function unspecified

This specification does not require any specific signature for the generic function op1,
but it does require that dispatching be done on the first argument.

6.16.2 Require method definition via a particular macro

Since we want to leave unspecified the particular signature of a method, we must use a

macro other than defmethod in order to define portably the implementation of an IDL

operation on the server side.

As a first draft, we chose the syntax to be reasonably close to defmethod.

However, we intend to consider several changes in the final version. In order to avoid

problems with loading, we designed the macro not to make use of information in the

interface repository at this time.
October 3, 2001 2:08 pm IDL/LISP 6-73

6

6.16.2.1 any handling

We might want to specify whether any parameters are to be unwrapped automatically.

6.16.2.2 Handling of out and inout parameters

We might want to define a syntax for automatic handling of out and inout parameters,

although we doubt that this is worth the trouble.

6.16.2.3 Integration with class definition macro

Most ambitiously, we could define a macro that combined the functionality of defclass
and corba:define-method to allow definition of methods in a way similar to Java or

C++; this is closer to the semantic model of IDL. Here, methods would be defined

within the scope of some class-definition macro. This could lead to simpler local slot

or attribute accessors, and a particular variable, such as this or self, could be bound to

the receiver.

6.17 operation mapping: parameter passing modes

The major issue here was whether to attempt to simulate explicitly the semantics of the

IDL call-by-value-result for inout parameters.

For example, we could have taken an approach analogous to the Holder classes of Java

and C++.

In practice, however, these features are rarely used and are adequately—and much

more simply—handled by using the Lisp multiple values mechanism. Also, the

semantics of inout parameters are not canonical in the presence of nested constructed

types.

We considered also mapping operation into an auxiliary macro that handled the

multiple-value bookkeeping automatically. We rejected this approach for this draft

because the semantics of inout parameters in their interaction with constructed types

did not seem clear to us.

6.18 Mapping of attribute
Many of the considerations for naming attribute are similar to those for naming

operation. We chose a naming convention similar to that for operation.

We assume as a design parameter that the writer function for an attribute will be

formed by treating the reader form as a generalized place for the purposes of setf.
6-74 IDL/LISP 10/3/01

6

6.19 Compiler mapping

Languages which lack first-class access to their compiler typically standardize only the

run-time environment and leave the IDL compilation unstandardized. The IDL

compiler is usually implemented as a separate program whose interface is defined by

the ORB vendor.

We considered two compiler interfaces: the current one and an interface that decoupled

the parsing and the compilation. The parse interface would simply build and interface

repository from the source file; the compilation interface would compile from an

interface repository. However, we the current mapping is much simpler.

6.20 Pseudo InterfaceMapping

The main question in mapping the pseudo-interfaces was whether to use Lisp

conventions throughout or simply translate the pseudo-IDL in “brute-force” fashion.

We chose the latter approach for two reasons:

• It’s easier.

• A high-quality Java pseudo-interface mapping already exists.

The Java pseudo-interface mapping already does much of the work of smoothing out

the rough edges of the raw IDL (particularly in the DII) so we stayed very close to

their mapping. We feel this approach will also reduce the learning curve for users

familiar with Java (or C++, upon which the Java mapping in turn was based).

However, our treatment of any was chosen to simplify use of the DII, since Lisp

values can be used directly.

6.21 Server side mapping

One of the most interesting issues here was whether to allocate slots automatically

based on interface attributes. On the positive side, doing so significantly simplifies

common usages and examples. On the negative side, it is unnecessary in certain cases.
October 3, 2001 2:08 pm IDL/LISP 6-75

6

6-76 IDL/LISP 10/3/01

	VERSION�1.0 Franz Inc.
	Table of Contents
	1 Preface 9
	2 Mapping and IDL 13
	3 Mapping IDL to Lisp 17
	4 Mapping Pseudo-Objects to Lisp 45
	5 Server-Side 53
	6 Design Decisions 59
	Preface

	1
	1.1 Status
	This document presents a proposed IDL/Lisp language mapping. It is being circulated for review to...
	Because this document is in preliminary form, it contains a number of formatting and editing prob...
	If the Lisp community concurs with the main ideas presented in the mapping, the document will be ...

	1.2 Scope
	This document is intended only to deal with matters concerning the IDL/Lisp language mapping. In ...

	1.3 Intended audience
	This document is intended for readers who are familiar with both IDL and with Lisp. However, Chap...

	1.4 Missing Items
	The following topics are incompletely specified or not specified at all

	1.5 Conventions
	IDL appears using this font.
	Lisp code appears using this font.
	(This usage is inconsistent in this version of the document).

	1.6 Version of Lisp
	This document is based on Common Lisp specified in X3J13 Committee, ANSI X3.226-1994, American Na...

	1.7 Contact Points
	Questions and comments about this document are encouraged and should be directed to:

	1.8 Acknowledgments
	The design of this mapping was influenced by a number of sources outside of Franz Inc.
	We used the ILU system and its mapping both for design guidance and for assessing practical exper...
	We would like to thank Ken Anderson of BBN for his comments on suggestions on this mapping.
	We would like to thank Greg Whittaker of Mitre Corporation for his comments and suggestions on th...
	We would like to thank Stanley Knutson of Concentra for his comments.
	We also used a mapping due to Thomas Mowbray of Mitre Corporation.
	We are grateful for the assistance of Harlequin Inc. in preparing this mapping.
	Mapping and IDL

	2
	This chapter briefly reviews some concepts of IDL and defines the notion of a language mapping. A...

	2.1 Introduction to IDL
	IDL, or Interface Definition Language, is a language defined by the Object Management Group.
	The key data type in IDL is the interface, which describes the behavior of an objects that implem...
	IDL allows the types other than interfaces to be expressed. For example, primitive types such as ...
	Constructed types analogous to the C struct or Pascal record type may be defined, and some simple...
	Arrays and sequences may also be defined.

	2.2 How IDL is used
	IDL is typically used in the following manner. An server process wishes to make some of its funct...
	The server publishes the IDL definitions that define the interfaces of the objects that it implem...
	The syntax used by the client to invoke a method on an object defined in IDL, and the relationshi...
	This document describes a mapping from IDL into Common Lisp.

	2.3 Mapping constituents
	Informally speaking we can divide a mapping into these categories.
	2.3.1 Mapping the primitive data types.
	IDL implicitly assumes that there is a universe of primitive data values, certain sets of which m...
	The mapping will, for each abstract IDL data value define the associated Lisp data value. The set...
	For example, IDL has a concept of the integer constant 12. It seems reasonable that this value wo...
	In fact, each IDL integer value corresponds to precisely one Lisp integer of the same value.
	One of IDL’s predefined types is unsigned short, which comprises the set of values between 0 and ...
	The primitive data types are boolean, double, long double, float, octet, short, unsigned short, l...

	2.3.2 Mapping the constructed data types
	The constructed data types are union, struct, array, exception, and sequence. These correspond to...

	2.3.3 Interfaces
	The most important data type to map is the interface data type.

	2.3.4 Mapping the syntax.
	How are methods on objects invoked? How are methods defined?
	For example, in Lisp we would ask: does method invocation correspond to function invocation, gene...

	2.3.5 Mapping the names
	It is necessary to assign a Lisp symbol that represents each named IDL construct. What symbol sho...

	2.3.6 Mapping pseudo-interfaces
	IDL has certain constructs that behave like interfaces in some ways but that are not full fledged...

	2.4 Mapping summary
	Most of the material in this mapping document concerns fairly esoteric issues that rarely arise i...
	Primitive data types are mapped to corresponding primitive data types in Lisp.
	struct and union are mapped to classes. Each member of the struct or union can be accessed using ...
	Arrays map to arrays.
	Sequences can map either to lists or to vectors; that is, sequences map to sequences.
	Exceptions are mapped to conditions.
	Interfaces are mapped to classes, and interfaces that inherit map to classes that inherit.
	Operations on interfaces map to methods on a generic function. This generic function discriminate...
	The module in which an IDL entity is declared is mapped to the package name of the corresponding ...
	A mapping to the IDL compiler is included.
	Mapping IDL to Lisp

	3
	This section describes the mapping of IDL into the Lisp language.
	The rationale for design decisions can be found in Chapter 6, “Overall Design Rationale".
	In most cases examples of the mapping are provided. It should be noted that the examples are code...

	3.1 Mapping concepts
	By an IDL entity we mean an element defined in some IDL file.
	For example, consider the code fragment
	module A {
	interface B {
	void op1(in long bar);
	};
	}
	The IDL entities are the module named “A”, the interface named “B”, the operation named “op1”, th...
	Our mapping will associate to each IDL entity declared in a an IDL specification a corresponding ...
	The Lisp entity corresponding to a given IDL entity will be said to be generated from the IDL ent...
	If the IDL entity has a name then the corresponding Lisp entity will also have a name. Whereas ID...
	It is the goal of this chapter to specify, for each IDL construct, the Lisp entity, and the name ...

	3.2 Semantics of type mapping
	The statement that an IDL type I is mapped to a Lisp type L indicates if V is a Lisp value whose ...
	For example, if V is passed as an parameter to an IDL operation or if V is returned from an IDL o...

	3.3 Mapping for basic types
	3.3.1 Overview
	The following table shows the basic mapping.
	The first column contains the IDL name of the IDL type to be mapped. Each IDL type denotes a set ...
	The set of values denoted by an entry in the first column will be mapped under the mapping descri...
	Figure�3�1 BASIC TYPE MAPPINGS

	Additional details are described in the sections following.
	3.3.1.1 Example
	(typep -3 ‘corba:short)
	> T
	(typep -3 ‘corba:ushort)
	> nil
	(typep “A string” ‘corba:string)
	> T

	3.3.2 boolean
	The IDL boolean constants TRUE and FALSE are mapped to the corresponding Lisp boolean literals T ...

	3.3.3 char
	IDL char maps to the Lisp type character. The type specifier corba:char specifies this type.
	3.3.3.1 Usage example
	(typep #\x ‘corba:char)
	> T
	(typep “x” ‘corba:char)

	3.3.4 octet
	The IDL type octet, an 8-bit quantity, is mapped as an unsigned quantity to the type corba:octet ...
	3.3.4.1 Usage example
	(typep 255 ‘corba:octet)
	> T
	(typep -1 ‘corba:octet)
	> nil

	3.3.5 wchar, wstring
	The types wchar and wstring are mapped to Lisp types named corba:wchar and corba:wstring. The typ...

	3.3.6 string
	The IDL string, both bounded and unbounded variants, are mapped to string. Range checking for cha...
	3.3.6.1 Usage example
	(typep “A string” ‘corba:string)
	> T
	(typep nil ‘corba:string)
	> nil

	3.3.7 Integer types
	The integer types each map to the Lisp integer type. Each IDL integer type has a corresponding ty...

	3.3.8 Floating point types
	The floating point types float, double, and long double map to Lisp types named corba:float, corb...

	3.3.9 fixed
	The fixed point type is mapped to the lisp type named corba:fixed. This type must be a subtype of...

	3.4 Introduction to named types
	We now discuss the mapping of types that are named. We begin with a discussion of terminological ...
	3.4.1 Naming terminology
	Notation for naming can be confusing, so some care is needed. Our specification is not formally r...
	3.4.1.1 IDL naming terminology
	By the IDL name of an IDL entity we mean the string that is the simple name of that entity.
	An IDL entity can be declared at the top-level or nested inside some other IDL entity. We say tha...
	We will sometimes elide the quotation marks in describing the names of IDL (and other entities) w...
	IDL Example
	module A{
	interface B{
	struct c {long foo;};};}
	The name of the struct is the string “c”. The name of the interface is the string “B”. The name o...

	3.4.1.2 Lisp naming terminology
	The name of a symbol is a string used to identify the symbol.
	Packages are collections of symbols. A symbol has a home package, which also has a name. A packag...
	Unless otherwise stated, we will assume that distinct package names refer to distinct packages.
	Symbols are notated by prefixing the name of the home package of the symbol to the character ‘:’ ...
	Thus, all symbols generated by this mapping are external symbols of their home package.
	A symbol can name a function, a package, a class, a type, a slot, or a variable. These namespaces...
	All alphabetic characters in the names of symbols used in this document are upper-case unless oth...
	Thus, the names notated here are implicitly converted to uppercase when they name a symbol.
	For example, when we write
	�� the symbol named hello-goodbye
	or
	��the symbol hello-goodbye
	we actually mean the symbol whose name is the string “HELLO-GOODBYE”.

	3.5 Distinguished packages
	This document will refer to to kinds of packages:
	The first kind of packages consists of these three distinct packages: the root package, the corba...
	The names of these packages are described below.
	The name of the root package is the string “OMG.ORG/ROOT”.
	The name of the corba package is “OMG.ORG/CORBA”.
	The name of the operation package is the string “OMG.ORG/OPERATION”.
	The precise semantics of these three packages is described below. Informally, the root package is...
	In addition, this specification makes use of the standard Common Lisp packages named “KEYWORD” an...
	3.5.1 Nicknames for distinguished packages
	An implementation is expected to support the addition of nicknames for a package via the standard...
	This document will use these nicknames without comment.

	3.6 Scoped names and scoped symbols
	Many of the Lisp entities we consider will be named according to the scoped naming convention des...
	A scoped symbol will be associated with the IDL entity, and it is this scoped symbol that will na...
	3.6.1 Definitions
	For any named IDL entity I there is a Lisp symbol S called the scoped symbol of I.
	The scoping separator is the string “/”.
	If I is a top-level module, then the name of S is the name of I.
	If I is a module nested within another module J, then the name of S is the concatenation of the n...
	The home package of the scoped symbol of a module is :keyword.
	Suppose I is a named IDL entity that is not a module. The name of the scoping symbol S of I is de...
	If the declaration of I is enclosed inside another IDL entity J that is not a module, then the na...
	If I is enclosed in a module M then the home package of S is named by the scoped symbol for M. Ot...
	3.6.1.1 Examples of scoping symbols
	First we consider a simple example:
	IDL
	module a {
	interface foo {};}
	The scoped symbol of the module is :a. Thus, the home package of this symbol is :keyword and the ...
	The scoped symbol of the interface is the symbol a:foo. Thus, the name of the symbol is the strin...

	IDL
	module a {
	interface outer {
	struct inner {
	in long member;};};}
	Here the scoped symbol for the module is :a, the scoped symbol for the interface is a:outer, and ...

	IDL
	module a{
	module b{
	interface c{
	struct d{
	long foo;};};};}
	The scoped symbol for the struct is a/b:c/d. The scoped symbol for the struct member is a/b:c/d/foo.

	3.7 The package_prefix pragma
	A package_prefix pragma has the form
	#pragma package_prefix string
	#pragma package_prefix “COM.FRANZ-”
	IDL
	#pragma package_prefix “COM.FRANZ-”
	module a{
	module b{
	interface c{};};};
	The scoped symbol for the interface is COM.FRANZ-A/B:C.

	3.8 Mapping for interface
	An IDL interface is mapped to a Lisp class. The name of this class is the scoped symbol for the i...
	The direct superclasses of a generated Lisp class are determined as follows. If the given IDL int...
	Otherwise, the generated Lisp class has direct superclasses that are the generated classes corres...
	The Lisp value nil can be passed wherever an object reference is expected.
	An IDL interface is also mapped into server side classes. The server classes are described in the...
	3.8.1 Example
	3.8.1.1 IDL
	module example{
	interface foo {};
	interface bar {};
	interface fum : foo,bar {};}

	3.8.1.2 generated Lisp
	(defclass example:foo(corba:object)())
	(defclass example:bar(corba:object)())
	(defclass example:fum (example:foo example:bar)())

	3.9 Mapping for operation
	This section discusses only how the user is to invoke mapped operations, not how the user is to i...
	An IDL operation is mapped to a Lisp function named by the symbol whose print- name is given by t...
	We will assume that all operation names have been appropriately imported into the current package...
	Thus, when an example is given in which there is a reference to the symbol naming the mapped func...
	3.9.1 Parameter passing modes
	The function defined by the IDL operation expects actual arguments corresponding to each formal a...

	3.9.2 Return values
	The function defined by the IDL operation returns multiple values. The first (i.e., the zeroth) v...
	Note that this implies that generated functions corresponding to operations declared void which h...

	3.9.3 one-way
	Operations declared oneway are mapped according to the above rules.

	3.9.4 Efficiency optimization: using macros instead of functions
	A conforming implementation may map an operation to a macro whose name and invocation syntax are ...

	3.9.5 exception
	An invocation of a function corresponding to a given IDL operation may result in the certain cond...
	An invocation of a function may also result in the signalling of conditions corresponding to syst...

	3.9.6 context
	For each context name declared by an operation, the mapped function accepts a corresponding keywo...

	3.9.7 Example
	3.9.7.1 IDL
	module example {
	interface face {
	long sample_method (in long arg);
	void voidmethod();
	void voidmethod2(out short arg);
	string method3 (out short arg1,inout string arg2,in boolean arg3);
	};

	3.9.7.2 generated Lisp
	(defpackage :example)
	(defclass example:face(corba:object)())
	;...

	3.9.7.3 usage
	; Suppose x is bound to a value of class example:face.
	(sample_method x 3)
	> 24
	(voidmethod x)
	> ; No values returned
	(voidmethod2 x)
	> 905 ; This is the value corresponding to the out arg
	(method3 x “Argument corresponding to arg2” T)
	> “The values returned” -23 “New arg2 value”
	; The Lisp construct multiple-value-bind can also be used to recover these values.
	(multiple-value-bind (result arg1 arg2)
	(method3 x “Argument corresponding to arg2” T)
	(list result arg1 arg2))
	> (“The values returned” -23 “New arg2 value”)

	3.10 Mapping for attribute
	attribute is mapped using a naming convention similar to that for operation.
	3.10.1 readonly attribute
	An attribute that is declared with the readonly modifier is mapped to methods whose name is the n...
	This method is specialized on the class corresponding to the IDL interface in which the attribute...

	3.10.2 normal attribute
	attributes that are not declared readonly are mapped to a pair of methods that follow the convent...
	Specifically, a reader-method is defined whose name follows the convention for readonly attribute...

	3.10.3 Example
	3.10.3.1 IDL
	module example{
	interface attributes {
	attribute string attr1;
	readonly attribute long attr2;};}

	3.10.3.2 Usage
	;; Assume x is bound to an object of class example:attributes
	(attr2 x)
	> 40001
	(attr1 x)
	> “Sample”
	(setf (attr1 x) “New value”)
	(attr1 x)
	> “New value”

	3.11 Mapping of module
	An IDL module is mapped to a Lisp package whose name is the name of the scoped symbol for that mo...
	3.11.1 Example
	3.11.1.1 IDL
	interface outer_interface {};
	module example {
	interface inner_interface {};
	module nested_inner_example {...
	interface nested_inner_interface{};
	module doubly_nested_inner_example{...};
	};
	}

	3.11.1.2 generated Lisp
	(defpackage :example)
	(defpackage :example/nested_inner_example)
	(defpackage :example/nested_inner_example/doubly_nested_inner_example)
	(defclass omg.root:outer_interface...)
	(defclass example:inner_interface ...)
	(defclass example/nested_inner_example:nested_inner_interface ...)

	3.12 Mapping for enum
	An IDL enum is mapped to a Lisp type whose name is the corresponding scoped symbol.
	Each member of the enum is mapped to a symbol with the same name as that member whose home packag...
	3.12.1 Example
	3.12.1.1 IDL
	module example{
	enum foo {hello, goodbye, farewell};
	};

	3.12.1.2 generated Lisp
	(defpackage :example)
	(deftype example:foo ()
	‘(member :hello :goodbye :farewell))

	3.12.1.3 usage
	(typep :goodbye ‘example:foo)
	> T
	(typep :not-a-member ‘enumexample:foo)
	> nil

	3.13 Mapping for struct
	An IDL struct is mapped to a Lisp class whose name is the corresponding scoped symbol. Each membe...
	The initialization keyword is a symbol whose name is the name of the member and whose package is ...
	The reader is named by a symbol that follows the conventions for attribute accessors. In the case...
	The writer is formed by using setf on the generalized place named by the reader.
	The type corba:struct is defined to be the union of all such generated types.
	An IDL struct has a corresponding constructor whose name is the same as the name of mapped Lisp t...
	3.13.1 Example
	3.13.1.1 IDL
	module structmodule{
	struct struct_type {
	long field1;
	string field2;

	3.13.1.2 generated Lisp
	(defpackage :structmodule)
	(defclass structmodule:struct_type (corba:struct)
	((field1 ...)
	(field2 ...)))

	3.13.1.3 usage
	(setq struct (structmodule:struct_type
	:field1 100000
	:field2 “The value of field2”))
	(field1 struct)
	> 100000
	(setf (field1 struct) -500)
	(field1 struct)
	> -500

	3.14 Mapping for union
	An IDL union is mapped to a Lisp class named by the the corresponding scoped symbol. This class i...
	The value of the discriminator can be accessed using the accessor function named union-discrimina...
	The value can be accessed using the accessor function named union-value in the operation package ...
	An IDL union has a corresponding constructor whose name is the same as the name of the type. This...
	3.14.1 Member accessors
	Each union member has an associated constructor and accessor.
	The symbol-name of the name of the constructor corresponding to a particular member is the concat...
	A constructor corresponding to a member takes a single argument, the value of the union. The disc...
	It is an error if a member reader is invoked on a union whose discriminator value is not legal fo...
	The default member is treated as if it were a member named default whose case labels include all ...

	3.14.2 Example
	3.14.2.1 IDL
	module example {
	enum enum_type {first,second,third,fourth,fifth};
	union union_type switch (enum_type) {
	case first: long win;
	case second: short place;
	case third:
	case fourth: octet show;
	default: boolean other;

	3.14.2.2 generated Lisp
	(defpackage :example)
	(defclass example:union_type (corba:union)
	(...))

	3.14.2.3 Usage
	(setq union (example:union_type
	:union-discriminator :first
	:union-value -100000))
	(union-value union)
	> -100000
	(union-discriminator union)
	> :FIRST
	(setq same-union (example:union_type/win -100000))
	(union-discriminator same-union)
	> :FIRST
	(setf (show same-union) 3)
	(union-discriminator same-union)
	> :THIRD
	(show same-union)
	> 3
	(setf (default same-union) nil)
	(union-discriminator same-union)
	> :FIFTH

	3.15 Mapping for const
	An IDL const is mapped to a Lisp constant whose name is the scoped symbol corresponding to that c...
	3.15.1 Example
	3.15.1.1 IDL
	module example {
	const long constant = -321;

	3.15.1.2 Generated Lisp
	(defpackage :example)
	(defconstant example:constant -321)

	3.16 Mapping for array
	An IDL array is mapped to a Lisp array of the same rank. The element type of the mapped array mus...
	Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the same dimensions.
	3.16.1 Example
	3.16.1.1 IDL
	module example {
	typedef short array1[2][3];
	interface array_interface{
	array1 op();}}

	3.16.1.2 Generated Lisp
	(defpackage :example)
	(deftype example:array1 () (array (2 3)))
	;; mapping for the interface...
	(defclass example:array_interface...)

	3.16.1.3 usage
	(setq a2 (op x)) ; Get an array
	(aref a2 0 1) ; Access an element
	> 3 ; Just an example, could be any value that is a short

	3.17 Mapping for sequence
	An IDL sequence is mapped to a Lisp sequence. Bounds checking shall be done on bounded sequences ...
	An implementation is free to specify the type of the mapped list more specifically.
	Suppose foo is an IDL data type and let L be the corresponding Lisp type.
	This means that anywhere a parameter of type sequence<foo> is expected, either a vector all of wh...
	Conversely, when such a sequence is returned from an operation invocation, this document specifie...
	In practice, it is likely that an ORB will marshal and unmarshal sequence as appropriately specia...
	This specification describes a number of functions created by the IDL mapping whose name is a sym...
	The effect of invoking the list-coercer corresponding to a particular function on arguments is eq...
	3.17.1 Example
	3.17.1.1 IDL
	module example {
	typedef sequence< long > unbounded_data;
	interface seq{
	boolean param_is_valid(in unbounded_data arg);
	};
	};}

	3.17.1.2 Generated Lisp
	(defpackage :example)
	(defun unbounded_data_p (sequence)
	(and (typep sequence ‘sequence)
	(every #’(lambda(elt)
	(typep elt ‘corba:long)))
	(deftype example:unbounded_data()
	‘(satisfies unbounded_data-p))
	; Let x be an object of type example:seq
	(param_is_valid x ‘(-2 3))
	> T
	(param_is_valid x #(-200 33))
	> T

	3.18 Mapping for exception
	Each IDL exception is mapped to a Lisp condition whose name is the scoped symbol for that excepti...
	Figure�3�1 Condition hierarchy for CORBA exceptions

	System exceptions inherit from a condition named corba:systemexception.
	Both corba:userexception and corba:systemexception inherit from the condition corba:exception.
	3.18.1 User exception
	The reader functions and initialization arguments for a condition generated by an IDL exception f...
	3.18.1.1 Example
	IDL
	module example {
	exception ex1 { string reason; };

	; generated Lisp
	(defpackage :example)
	(define-condition example:ex1 (corba:userexception)
	((reason :initarg :reason ...))
	; Usage example
	(error (example:ex1 :reason “Example of condition”))

	3.18.2 System exception
	The standard IDL system exceptions are mapped to Lisp conditions that are subclasses of corba:sys...

	3.19 Mapping for typedef
	IDL typedef is mapped to a Lisp type whose name is the scoped symbol corresponding to that typedef.
	This name of this type denotes the set of Lisp values that correspond to the Lisp type that is ge...
	However, it is not required to perform recursive checking of the contents of constructed types li...
	3.19.1 Example
	3.19.1.1 IDL
	module example{
	typedef unsigned long foo;
	typedef string bar;

	3.19.1.2 generated Lisp
	(defpackage :example)
	(deftype example:foo () ‘corba:unsigned-long)
	(deftype example:bar() ‘string)

	3.19.1.3 Usage example
	(typep -3 ‘example:foo)
	> nil
	(typep 6000 ‘example:bar)
	> nil
	(typep “hello” ‘example:bar)
	> T

	3.20 Mapping for any
	The IDL type any represents an IDL entity with an associated typecode and value. It is mapped to ...
	3.20.1 Constructors
	The constructor corba:any takes two keyword arguments named any-value and any- typecode. If any-t...
	An any may also be created via the invocation
	(corba:any :any-typecode val :any-value type).

	3.20.2 Typecode accessor
	The actual typecode of a Lisp value v is defined as follows.
	If v was created by an invocation of corba:any, then the actual typecode of v is the any-typecode...
	If v is a nonnegative integer than the actual typecode of v is the the typecode that describes th...
	Otherwise if v is a negative integer then the actual typecode of v is that typecode that describe...
	Otherwise if v is a member of corba:float or corba:double then the actual typecode of v is corba:...
	Otherwise if v is a member of corba:boolean then the actual typecode of v is corba:boolean.
	Otherwise if v is a char then the actual typecode of v is corba:tc_char.
	Otherwise if v is a string designator then the actual typecode of v is corba:tc_string.
	Otherwise if v is an array then then the actual typecode of v a typecode describing an array comp...
	Otherwise if v is a list then the the actual typecode of v is a typecode describing a sequence co...
	Otherwise v must be an instance of corba:object, corba:struct or corba:union and the actual typec...
	(any-typecode v) is defined to resolve to the actual typecode of v.

	3.20.3 value accessor
	If v is a number, a string, a sequence, a boolean, or an instance of corba:enum, corba:object, or...
	Otherwise, if v is an any�created via a call to the corba:any constructor, then (any- value v) re...
	Otherwise the ORB may signal a CORBA:BAD_PARAM exception. This might be necessary, for example, i...

	3.20.4 Interaction with GIOP
	For the purpose of GIOP marshalling, a Lisp entity is considered to have the typecode and value c...
	For example, consider the following IDL:
	module example{
	interface any_example{
	void foo (in any val);};}
	Now suppose that x is bound to a proxy for a remote implementation of the example::any_example in...
	An invocation

	(foo x 3)
	will forward to the remote implementation a request to invoke the “foo” method with single parame...
	However, an invocation
	(foo x (corba:any :any-typecode corba:tc_longlong :any-value 3))
	will forward to the remote implementation a request to invoke the “foo” method with single parame...
	Thus, the default coercion rules for any may be overridden as necessary.
	Furthermore, the DynAny pseudo interface provides an alternative way to access the values in an any.

	3.20.5 Additional examples of any usage
	(any-typecode 3)
	> <octet typecode>
	(any-typecode -1)
	> <short typecode>
	(any-typecode “foo”)
	> <string typecode> ; could also be typecode for an array.
	(any-value “foo”)
	> “foo”
	(any-value nil)
	> nil
	(any-typecode nil)
	> <typecode for boolean>

	3.21 Mapping Overview
	The detailed mapping guidelines for specific types was designed to conform to a small set of unif...
	3.21.1 Rule 1: How names of types are formed
	If an IDL identifier I names a type at the top level of some module named M, then the correspondi...
	Nested types are separated by the character “/”. Thus, if there is another type J defined within ...

	3.21.2 Rule 2: How names of operations are formed
	The rule for operation package mapping is simpler: All symbols that correspond to Lisp functions ...

	3.21.3 Rule 3: Lisp functions corresponding to IDL types
	IDL defines many kinds of types: unions, structs, interfaces, exceptions.
	We can think of each of each of these types, informally, as denoting entities with “named slots”....
	For each IDL type, there is an associated constructor function that creates a value of that type ...
	3.21.3.1 The constructor function
	The constructor function corresponding to a type is identical to the (fully scoped) name of the t...

	3.21.3.2 Accessing the members
	Each “named slot” defines two functions: a reader and a writer. The reader has the same name as t...

	3.21.3.3 Notes
	In applying Rule 3, it is important to note that not all of the associated functions make sense f...
	Mapping Pseudo-Objects to Lisp

	4

	4.1 Introduction
	Pseudo-objects are constructs whose definition is usually specified in “IDL”, but whose mapping i...
	For each of the standard IDL pseudo-objects we either specify a specific Lisp language construct ...
	We have chosen the option allowed in the IDL specification section 4.1.3 to define Status as void...
	A Pseudo-object differs from a regular CORBA object in the following ways:

	4.2 Certain exceptions
	The standard CORBA PIDL uses several exceptions, Bounds, BadKind, and InvalidName.
	(define-condition corba:bounds (corba:userexception)...)
	(define-condition corba:typecode/badkind(corba:userexception)...)
	(define-condition corba:typecode/bounds(corba:userexception)...)
	(define-condition boa:invalidname (corba:useexception)...)

	4.3 Environment
	The Environment is used in request operations to make exception information available.
	Since conditions in Lisp are first class objects, we see no reason not to define Environment simp...
	(deftype corba:environment() ‘corba:exception)

	4.4 NamedValue
	A NamedValue describes a name, value pair. It is used in the DII to describe arguments and return...
	We map this as if it were a normal struct as specified by the IDL using the IDL in module CORBA:
	typedef unsigned long Flags;
	typedef string Identifier;
	const Flags ARG_IN =1;
	const Flags ARG_OUT = 2;
	const Flags ARG_INOUT = 3;
	const FLAGS CTX_RESTRICT_SCOPE = 15;
	struct NamedValue{
	Identifier name; any argument; long len; Flags arg_modes;}

	4.5 NVList
	A NVList is used in the DII to describe arguments and in the context routines to describe context...
	pseudo interface NVList { readonly attribute unsigned long count; NamedValue add (in Flags flags)...

	4.6 Context
	A Context is used in the DII to specify a context in which context strings must be resolved befor...
	It is mapped to a class corba:context whose operations are as specified in the PIDL for this class.
	pseudo interface Context {
	readonly attribute Identifier context_name;
	readonly attribute Context parent;
	Context create_child (in Identifier child_ctx_name);
	void set_one_value (in Identifier propname, in any propvalue);
	void set_values (in NVList values);
	void delete_values (in Identifier propname);
	NVList get_values (in Identifier start_scope,
	in Flags op_flags,
	in Identifier pattern);

	4.7 Request
	A Request is mapped to an instance of class CORBA:request according to the IDL:
	typedef sequence<Exception> ExceptionList;
	typedef sequence<Context> ContextList;
	pseudo interface Request {
	readonly attribute Object target;
	readonly attribute Identifier operation;
	readonly attribute NVList arguments;
	readonly attribute NamedValue result;
	readonly attribute Environment env;
	readonly attribute ExceptionList exceptions;
	reaodnly attribute ContextList contexts;
	attribute Context ctx;
	any add_in_arg();
	any add_named_in_arg (in string name);
	any add_inout_arg();
	any add_named_inout_arg(in string name);
	any add_named_out_arg(in string name);
	void set_return_type(in TypeCode tc);
	any return_value();
	void invoke();
	void send_oneway();
	void send_deferred();
	void get_response();
	boolean poll_response();

	4.8 ServerRequest
	ServerRequest is used in the DSI. It is to be mapped according to the IDL to the Lisp class named...
	pseudo interface ServerRequest{
	Identifier op_name();
	Context ctx();
	void params (in NVList parms);
	void result (in any res);
	void except (in any ex);

	4.9 TypeCode
	The deprecated parameter and param_count methods are not mapped.
	A TypeCode is an instance of the class named CORBA:TypeCode. It follows the pseudo IDL below.
	enum TCKind{
	tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean, tk_cha...
	pseudo interface TypeCode {
	exception Bounds{};
	exception BadKind{};
	boolean equal (in TypeCode tc);
	//for objref, struct, union, enum, alias, and except
	TCKind kind();
	RepositoryId id() raises (BadKind);
	Identifier name() raises (BadKind);
	//for struct, union, enum, and except
	unsigned long member_count() raises (BadKind);
	Identifier member_name(in unsigned long index) raises (BadKind, Bounds);
	//for struct, union, and except
	TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);
	//for union
	any member_label(in unsigned long index) raises (BadKind, Bounds);
	TypeCode discriminator_type() raises (BadKind);
	long default_index() raises (BadKind);
	//for string, sequence, and array
	unsigned long length() raises (BadKind);
	TypeCode content_type() raises (BadKind);

	4.10 ORB
	4.10.1 ORB initialization
	An ORB is initalized via the ORB_init pseudooperation in the CORBA module:
	This pseudooperation simply takes as argument various implementation-defined keywords.

	4.10.2 ORB pseudo-object
	The ORB is mapped according to its pseudo-IDL definition. This includes the following IDL:
	pseudo interface ORB {
	exception InvalidName{};
	typedef string ObjectId;
	typedef sequence<ObjectId> ObjectIdList;
	ObjectIdList list_initial_services();
	Object resolve_initial_references(in ObjectId object_name) raises(InvalidName);
	string object_to_string (in Object obj);
	Object string_to_object (in string str);
	NVList create_list(in long count);
	NVList create_operation_list(in OperationDef oper);
	NamedValue create_named_value(in String name, in any value, in Flags flags);
	Context get_default_context();
	void send_multiple_requests_oneway(in RequestSeq req);
	void send_multiple_requests_deferred(in RequestSeq req);
	boolean poll_next_response();
	Request get_next_response();
	//typecode creation
	TypeCode create_struct_tc (
	in RepositoryId id,
	in Identifier name,
	in StructMemberSeq members);
	TypeCode create_union_tc(
	in RepositoryId id,
	in Identifier name,
	in Typecode discriminator_type,
	in UnionMemberSeq members);
	Typecode create_enum_tc(
	in RepositoryId id,
	in Identiifer name,
	in EnumMemberSeq members);
	TypeCode create_alias_tc(
	in RepositoryId id,
	in Identifier name,
	in TypeCode original_type);
	TypeCode create_exception_tc(
	in RepositoryId id,
	in Identifier name,
	in StructMemberSeq members);
	TypeCode create_interface_tc(
	in RepositoryId id,
	in Identifier name);
	TypeCode create_string_tc (in unsigned long bound);
	TypeCode create_wstring_tc (in unsigned long bound);
	TypeCode create_recursive_sequence_tc (
	in unsigned long bound,
	in unsigned long offset);
	TypeCode create_array_tc (
	in unsigned long length,
	in TypeCode element_type)

	4.11 Object
	The IDL Object type is mapped to the class corba:object. It supports the operations defined in th...
	The is_nil pseudo operation is mapped to a function named op:is_nil which may be applied to the l...
	The duplicate and release pseudo-operations are unnecessary in the Lisp mapping and are not mapped.
	pseudo interface Object{
	void create_request(
	in Context ctx,
	in Identifier operation,
	in NVList arg_list,
	inout NamedValue result,
	out Request request,
	in Flags req_flags);
	InterfaceDef get_interace();
	boolean is_nil();
	boolean is_a (in string logical_type_id);
	boolean non_existent();
	boolean is_equivalent (in Object other_object);
	unsigned long hash (in unsigned long maximum);

	4.12 Principal
	The Principal interface is deprecated and is not mapped.

	4.13 DynAny
	The DynAny pseudo interface is mapped according to its pseudo IDL without any modification. A Dyn...

	4.14 The IDL Compiler
	The IDL compiler uses the following top-level pseudo-IDL definition in the CORBA module:
	typedef string pathname_designator;
	Repository idl (pathname_designator path);
	The Lisp mapping is to the function named corba:idl that takes a single argument, a pathname desi...
	The effect of invoking corba:idl on a pathname designator is to define within the Lisp world all ...
	If the Lisp mapping requires that package named P be created, and there is already a package Q wi...
	The object returned is an object of type corba:repository and represents an Interface Repository ...
	Implementations may freely add additional keywords to corba:idl to express additional functionali...
	Server-Side

	5

	5.1 Introduction
	This chapter discusses how implementations create and register objects with the ORB runtime.

	5.2 Mapping of native types
	Specifically, the native type PortableServer::Servant is mapped to the Lisp class named. Portable...

	5.3 Implementation objects
	An implementation of an IDL interface I corresponding to a Lisp class named I should inherit, dir...

	5.4 Servant classes
	An interface corresponding to a class named by a Lisp symbol s with package p and name n may be i...
	For each attribute in the interface, the associated servant class has a slot whose name is the na...
	If the interface has no base interfaces, then the associated skeleton class has as direct supercl...
	Otherwise, if the interface has base interfaces named A, B, C... then its associated servant clas...
	5.4.1 Note on proxies
	An ORB that supports proxies is encouraged to use a similar inheritance hierarchy for proxies, wi...

	5.5 Defining methods
	The only portable way to implement an operation on a servant class is by use of the corba:define-...
	The syntax of corba:define-method is intended to follow as closely as possibly the syntax of the ...
	5.5.1 Syntax of corba:define-method
	corba:define-method function-name {method-qualifier}* corba-specialized-lambda- list form*
	function-name::= {operation-name | (setf operation-name)}
	operation-name:: symbol
	method-qualifier::={:before | :after | :around}
	corba-specialized-lambda-list ::= setf-lambda-list | normal-lambda-list
	setf-lambda-list ::= (argument-specifier receiver-specifier)
	normal-lambda-list ::= (receiver-specifier {parameter-specifer}* context-list)
	context-list ::= {} | {&key {context-identifier}+}
	context-identifier ::= symbol
	receiver-specifer ::= (receiver-name receiver-class)
	receiver-name ::= symbol
	receiver-class ::= symbol
	parameter-specifier ::= symbol

	5.5.2 Description
	This corba:define-method macro is used to implement an operation on an interface.
	operation-name is a symbol whose name is the name either of an operation or of an attribute decla...
	The number of parameter-specifiers listed in the normal-lambda-list must equal the combined numbe...
	If function-name denotes an operation, then the effect of corba:define-method is to inform the OR...
	The operation of corba:define-method in the case in which function-name names an attribute is ana...
	The behavior of auxiliary specifiers and of dispatch is the same as their corresponding action un...
	Note that the syntax of corba:define-method is a strict subset of that of defmethod: every legal ...
	An implementation is free to extend the syntax of corba:define-method, for example to allow type-...

	5.6 Examples
	5.6.1 Example: A Named Grid
	The first example shows how one might encapsulate a “named-grid”, which is a grid of strings.
	5.6.1.1 IDL
	This is the IDL of the interface to a named grid of strings.
	module example{
	interface named_grid{
	readonly attribute string name;
	string get_value (in unsigned short row,
	in unsigned short column);
	void set_value (in unsigned short row,
	in unsigned short column,
	in string value);
	}

	5.6.1.2 Generated Lisp code
	The IDL compiler might generate a class corresponding to the example::named_grid interface using ...
	(defpackage :example)
	(defclass example:named_grid (corba:object)())

	5.6.1.3 Servant class
	In order to implement the IDL interface, the user would extend the class example:named_grid-servant.
	;;Sample implementation of named_grid
	(defclass grid-implementation (example:named_grid-servant)
	(
	(grid :initarg :grid
	:initform (make-array ‘(2 3) :initial-element “Init”)))

	5.6.1.4 Implementation of the IDL operations
	The corba:define-method macro is used to define the methods that implement each of the operations...
	These implementations do not perform any argument or range checking, which a production system wo...
	The implementation is free to define other methods on the class, including print-object methods a...
	(corba:define-method get_value ((the-grid grid-implementation)
	row
	column)
	(aref (slot-value the-grid ‘grid) row column))
	(corba:define-method set_value ((the-grid grid-implementation)
	row
	column
	value))
	(setf (aref the-grid row column) value))

	5.6.1.5 Usage example
	Once the implementation class is defined, it can be instantiated and its instances treated as a n...
	This usage example does not discuss registration of the object with the ORB.
	; create a named grid
	(setq grid (make-instance ‘example:grid-implementation :name “Example of a
	grid”)
	(name grid)
	> “Example of a grid”
	(set_value grid 0 1 “Hello”)
	> ; No values returned
	(get_value grid 0 1)
	> “Hello”
	Design Decisions
	6
	The purpose of this chapter is to explain and to justify the reasoning behind the design choices ...
	This chapter is not normative and is not intended to be included in the finally approved mapping ...

	6.1 Introduction
	The overall goal of our mapping design was to make a successful Lisp mapping. We wanted the mappi...
	We began by studying the existing mappings and in particular determining which mappings appeared ...
	6.1.1 Goals
	Within the constraint of faithfully representing IDL semantics, we attempted to satisfy a number ...
	6.1.1.1 Ease-of-use
	CORBA systems are often cross-platform, cross-language, and cross-vendor. Their development prese...

	6.1.1.2 Consistent
	A crucial design goal was that our mapping be as easy to learn to use as possible even for users ...
	Attributes or attribute-like values are always mapped the same: to keyword initializers and to ac...

	6.1.1.3 Flexibility
	The mapping should facilitate the production of flexible and dynamically modifiable code. CLOS au...

	6.1.1.4 Performance
	The features described here should not impose undue performance overhead.

	6.1.1.5 Adherence to IDL
	We adhere to IDL conventions as much as possible, even when specifying pseudo- interfaces.

	6.1.2 Lisp Version
	The term “Lisp” is often used colloquially to refer to “Lisp-like” languages—interpreted, high-le...
	By “Lisp” we will mean exclusively “Common Lisp” as specified by the in X3J13 Committee, ANSI X3....
	In particular, we do not rely on features that were not present in the ANSI standard. We discuss ...
	6.1.2.1 Meta-object protocol
	Although production Lisp systems support the meta-object protocol as described in Art of the Meta...

	6.1.2.2 Multithreading
	The X3J13 group did not standardize multiprocessing or concurrency semantics for Lisp, although a...

	6.1.2.3 Case-sensitivity
	Some vendors of Lisp support “case-sensitive” Lisps of various flavors. This document does not ad...

	6.1.3 Reverse mapping
	We have not considered explicitly reverse-mapping issues.

	6.1.4 Compiler interface
	The interface to the compiler is part of the specification so that portable programs can be writt...

	6.1.5 Type checking
	We did not specify in most cases that a particular exception be raised if incorrectly typed value...

	6.2 Overall Design Philosophy
	In evaluating the suitability of committing the standard to a particular design decision, we cons...
	6.2.1 Relationship to other mappings
	We relied particularly on three mappings: the C++ mapping, the Java mapping, and the Smalltalk ma...
	The C++ mapping is important because it is one of the most comprehensive mappings and because IDL...
	The Java mapping was one of the most recent, is very popular, and is easy to use.
	The Smalltalk mapping is one of the most straightforward and consistent of the mappings.
	However, we are aware of and studied the C mapping and the Ada mapping. We felt the C mapping was...
	For example, our any mapping follows the Smalltalk mapping philosophy. Our DII mapping, however, ...
	On the other hand, our handling of names follows the IDL convention for repository ID’s rather th...

	6.3 Names
	There are several differences between the IDL and the Lisp namespaces.
	6.3.1 Capitalization
	IDL identifiers are case-sensitive, but two identifiers differing only in case are not allowed to...
	Although Lisp symbols are also case-sensitive, in practise it is often inconvenient to notate in ...
	Therefore, we have chosen to convert implicitly all IDL identifiers to upper-case.
	However, we follow the customary usage of X3J13 in notating symbols using mixed- case—typically l...

	6.3.2 Nesting
	The IDL namespace is deeply nested, although there is only a single “root” namespace.
	There are many disjoint Lisp namespaces, each of which is essentially bilevel. We chose to partit...

	6.3.3 Character set
	Lisp symbols typically have names comprising 8-bit characters. However, certain characters, such ...
	The situation for IDL identifier is not as clear for the following reasons:
	6.3.3.1 International characters
	The CORBA 2.1 specification, as has previous CORBA specs, explicitly allows a number of ISO-Latin...
	However, no other mapping of which we are aware has provision for mapping symbols containing such...

	6.3.3.2 Other special characters
	Lisp allows punctuation characters such as “/”, “-” and “.” to be part of the character name, whi...

	6.3.3.3 Keywords
	Lisp does not have reserved words in the usual sense (although the bindings of certain symbols ma...

	6.3.4 Alternative mappings
	It would have been possible to choose a name mapping that produced names more familiar to Lisp us...

	6.3.5 Prefixes
	We provided a package_prefix pragma in order to avoid clashes between IDL module names and genera...

	6.4 Mapping of basic types
	The mapping for most of the basic types is fairly straightforward, although character- set issues...
	There are questions in certain cases, however:
	6.4.1 boolean
	We considered mapping this type to the Lisp values defined by generalized boolean, which is easie...

	6.4.2 float and double
	In practice Lisp vendors use IEEE format to represent floating point numbers, but because this re...

	6.5 Mapping for struct
	An alternative mapping would map an IDL struct directly into a structure-object, an object create...
	Furthermore, this makes the format of the accessors for exception more uniform, as it can simply ...
	However, we have chosen our mapping so that a structure-class implementation would not be preclud...

	6.6 Mapping for exception
	Clearly IDL exception should be mapped to Common Lisp condition.
	Nevertheless, there were several design issues that arose
	6.6.1 condition hierarchy
	It seemed clear that the Lisp condition corresponding to CORBA user exception and CORBA system ex...
	However, it is not clear from which of the standard Lisp condition classes the corba:exception cl...
	We considered these options as candidates for the direct superclass of corba:exception:
	We quickly rejected simple-error, simple-condition, and warning as candidates.
	The most familiar condition to signal for Lisp programmers would probably be error, but the speci...
	In particular, the ANSI spec [p. 9-11] states that “The type error consists of all conditions tha...
	On the other hand, a serious-condition is one which is “serious enough to require interactive int...
	It would certainly be a reasonable mapping for corba:exception to inherit directly from condition...
	The question of the direct superclass of corba:exception affects the behavior of condition handle...

	6.6.2 Naming exception classes
	We chose to name the classes corresponding to system and user exceptions corba:systemexception an...
	However, the IDL for the enum types corresponding to exception used in the IDL for the GIOP uses ...
	6.6.2.1 Member accessors
	We chose a convention for member accessors consistent with that for struct, except that of course...

	6.7 Mapping for enum
	A Lisp symbol in the :keyword package usually fill the role of enum in C-like languages. This map...
	We could have chosen a self-typing mapping as well—languages like Java have two mappings for enum...

	6.8 Mapping for union
	An alternative mapping would map the union to a base class and each of the branches to concrete s...
	We eventually decided to follow closely the Java union mapping, again to shorten the learning curve.
	A simpler alternative would have been to map a union to a cons whose car holds the discriminator ...

	6.9 Mapping of module
	The IDL module is a name-scoping mechanism in IDL whose corresponding Lisp equivalent is the pack...
	We chose not to rely on automatic importing of symbols in a package corresponding to an outer mod...
	Because we are using “/” as a separator for names of components of a nested namespace, we felt th...
	The “/” separator was chosen instead of the “.” separator because that is the separator used by I...

	6.10 Mapping for array
	An IDL array is mapped to a Lisp array. It would be reasonable to specify formally the declared :...
	There is a potential ambiguity in dealing with nested arrays. Consider the following IDL definitions
	// IDL
	typedef short a [2];
	typedef a b[3];
	typedef short c[2][3];
	In the mapping, c would be mapped to a 2-dimensional array, but b would be mapped to a one-dimens...
	The problem is that the definition of ArrayDef in the interface repository only allows one-dimens...
	Because there are known problems with the treatment of interface repositories in CORBA, we chose ...

	6.11 Mapping for sequence
	This draft chooses to map IDL sequence to the Lisp type sequence.
	There are several possible alternative mappings.
	6.11.0.1 sequence-to-list
	The simplest mapping to use and to explain is probably the mapping that maps sequence to list. Un...

	6.11.0.2 sequence-to-vector
	Another natural mapping is for sequence to go to vector. Although this is an appropriate mapping ...
	Of course it would be possible in such cases to map sequence to adjustable array with fill pointe...

	6.11.0.3 Hybrids
	Some proposed mappings have generally mapped sequence to list, but have mapped to array in certai...

	6.11.1 Advantages of our proposal
	6.11.2 Disadvantages of our proposal
	6.11.3 Conclusion
	It is certainly tempting to fix the mapping of sequence either to vector or to list. However, we ...

	6.12 Mapping for any
	In the case of any, there are several issues to consider: convenience, generality, and accessors.
	The any mapping was chosen so that Lisp values can be passed back and forth from operations expec...
	The special handling of string designators was chosen to avoid ambiguity in passing enum values.
	The coercions were chosen so that the typecode would denote the “smallest” containing type in som...
	This semantics was chosen particularly to facilitate passing nested lists of primitives.

	6.13 Mapping for typedef
	It seems clear that a typedef should map to a Lisp type that contains at least all the values tha...
	These cases arise particularly in handling the mapping for array, sequence, struct, and union. It...
	In order to simplify the exposition, we do not mandate special type-checking beyond checking.

	6.14 Mapping for interface
	We chose to map IDL interface into class.
	One alternative would have been to define our own IDL-like object system, for example using a sys...
	Another alternative would have been to require that the metaclass of such mapped classes be a par...
	We required implementation classes to inherit from a class named corba:servant. It might be more ...

	6.15 Mapping for operation: the name
	The proposed operation mapping is the most unusual of our proposals, and it diverges from previou...
	First, we decided that since interface was mapped to class it would be natural to map operation t...
	We rejected an invocation syntax that relied on macro expansion as these tend either to fail or t...
	The operation package name was a crucial choice. A short name would run the risk of conflicts wit...
	We chose to support both: the ORB supports a long name, “OMG.OPERATION” by default, but it must s...
	We rejected an invocation syntax that relied on reader-macros as being baroque. However, an imple...
	6.15.1 Explicit operation mapping
	The most obvious mapping was in fact the mapping chosen by previous Lisp mappings: Simply map the...
	//IDL
	module example{
	interface foo{
	long op1(in short arg);};}

	generated Lisp
	(defmethod example:foo/op1 ((this example:foo) arg)
 ; implementation)
	(example:foo/op1 foo-instance 32)
	(Of course, the specific naming conventions—whether the operation was named example:foo/op1 or ex...
	This mapping has certain clear advantages:

	6.15.1.1 Encapsulation violation
	It forces an invocation of a method on an object to know in precisely which superclass the method...

	6.15.1.2 Ease-of-use problems
	While class names and type names are used fairly infrequently in code, method names are used ofte...

	6.15.2 Use of a designated package
	Why not just say
	(op1 x 3)
	in the above example?
	Mostly because it is not clear in what package op1 should reside.
	It cannot be the package named example for a similar reason to that in the above case: an interfa...
	Now it seems like we will be OK if we define all operations in the same, fixed, package. Suppose ...
	(idl:op1 x 3)
	This is a workable solution, but there are still some problems:
	6.15.2.1 Importing
	We cannot simply import the idl package, since the name of an operation may (and often does) conf...
	To require the user to shadow explicitly each conflict seems unwieldy, as the Lisp package system...
	Thus, this solution requires the explicit prefix of a package before each method invocation. This...

	6.15.2.2 Conflict
	This would conflict with user usages of the same package.

	6.15.3 Using a prefix
	The problem of importing, above, can be resolved to some extent by requiring each operation to us...
	x.op1(3)
	in Lisp we would write,
	(.op1 x 3)
	where the .op1 operation was imported from the idl package.
	The problem with this is that importing symbols in an IDL environment is a procedure fraught with...

	6.15.4 Using the :keyword package
	Since we have seen that dynamic import of symbols generated by the IDL compiler can lead to subtl...
	(:op1 x 3)
	This seems concise and unambiguous (although we have still not discussed signature issues). Indee...
	6.15.4.1 Appearance
	Some Lisp users have complained that this convention makes a method invocation look too much like...
	We also rejected hybrid solutions based on combining keyword mapping with a prefix, as the result...

	6.15.4.2 Name conflict
	It could conflict with a user’s usage of the function-value of a :keyword symbol.

	6.15.5 Conclusion
	We thus were led to the solution we proposed, which allows the very concise :keyword usage withou...

	6.16 operation mapping: signature
	We have chosen our naming convention for operations by process of elimination, but we are not yet...
	It would be most natural to map the operation op1 into a generic function named op1 in the operat...
	Thus, we would like to be able to implement the method op1 on a particular interface via a syntax...
	(defmethod op1 ((receiver example:bar) arg)
	;...implementation code
)
	Unfortunately, CLOS mandates the restriction that the methods of a single generic function have c...
	We could skirt this restriction by defining a metaclass for op1 different from standard- generic-...
	In practice, we chose a two-pronged approach to the problem.

	6.16.1 Leave the signature of the generic function unspecified
	This specification does not require any specific signature for the generic function op1, but it d...

	6.16.2 Require method definition via a particular macro
	Since we want to leave unspecified the particular signature of a method, we must use a macro othe...
	As a first draft, we chose the syntax to be reasonably close to defmethod.
	However, we intend to consider several changes in the final version. In order to avoid problems w...
	6.16.2.1 any handling
	We might want to specify whether any parameters are to be unwrapped automatically.

	6.16.2.2 Handling of out and inout parameters
	We might want to define a syntax for automatic handling of out and inout parameters, although we ...

	6.16.2.3 Integration with class definition macro
	Most ambitiously, we could define a macro that combined the functionality of defclass and corba:d...

	6.17 operation mapping: parameter passing modes
	The major issue here was whether to attempt to simulate explicitly the semantics of the IDL call-...
	For example, we could have taken an approach analogous to the Holder classes of Java and C++.
	In practice, however, these features are rarely used and are adequately—and much more simply—hand...
	We considered also mapping operation into an auxiliary macro that handled the multiple-value book...

	6.18 Mapping of attribute
	Many of the considerations for naming attribute are similar to those for naming operation. We cho...
	We assume as a design parameter that the writer function for an attribute will be formed by treat...

	6.19 Compiler mapping
	Languages which lack first-class access to their compiler typically standardize only the run-time...
	We considered two compiler interfaces: the current one and an interface that decoupled the parsin...

	6.20 Pseudo Interface Mapping
	The main question in mapping the pseudo-interfaces was whether to use Lisp conventions throughout...
	We chose the latter approach for two reasons:
	The Java pseudo-interface mapping already does much of the work of smoothing out the rough edges ...
	However, our treatment of any was chosen to simplify use of the DII, since Lisp values can be use...

	6.21 Server side mapping
	One of the most interesting issues here was whether to allocate slots automatically based on inte...

