
Large Life Science Datasets

with SPARQL or Prolog

Jans Aasman, Ph.D.

CEO Franz Inc

ja@franz.com

You work in the life sciences:

How do you use AllegroGraph?

This talk

• AllegroGraph in a few slides

• Using the Science Commons datasets

• Gruff: A rich client for data exploration, prolog and sparql

• AGWebview: a webbrowser

• Some observations of Science Commons dataset users

• Prolog or SPARQL

Graphs, triples, triple-store?

createTripleStore(“seminar.db")

addTriple (Person1 first-name Steve)

addTriple (Person1 isa Organizer)

addTriple (Person1 age 52)

addTriple (Person2 first-name Jans)

addTriple (Person2 isa Psychologist)

addTriple (Person2 age 50)

addTriple (Person3 first-name Craig)

addTriple (Person3 isa SalesPerson)

addTriple (Person3 age 32)

addTriple (Person1 colleague-of Person2)

addTriple (Person1 colleague-of Person3)

addTriple (Person3 neighbor-of Person1)

addTriple (Person3 neighbor-of Person2)

addTriple (Person1 likes Pizza)

And now you can query in Prolog

or Sparql

(select (?xname ?yname)

(q ?x colleague-of ?y)

(q ?y neighbor-of ?x)

(q ?x first-name ?xname)

(q ?y first-name ?yname))

SELECT ?xname ?yname WHERE {

?x ex:colleague-of ?y .

?y ex:neighbor-of ?x .

?x ex:first-name ?xname .

?y ex:first-name ?yname . }

AllegroGraph

• Scalable and persistent Triple (Quad) Store

– Load and query over Billions of RDF triples

– The only fast reasoner that doesn’t need materializing

• Compliant with standards

– RDF, RDFS, OWL, SPARQL, Named Graphs, ISO Prolog,
OWL-lite reasoning

• RDFS++ Reasoning

– All of RDFS + owl:sameAs, owl:transitiveProperty,
owl:inverseOf, owl:hasValue

• Full text indexing

• Spatial, Temporal and Social

LUBM(8000) queries

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Query Number

S
e
c
o
n
d
s

AllegroGraph 3.2

Other

LUBM(8000) with long queries zeroed

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Queries

S
e
c
o
n
d
s

AllegroGraph 3.2

Other

AllegroGraph

• Scalable and persistent Triple (Quad) Store

– Load and query over Billions of RDF triples

– The only fast reasoner that doesn’t need materializing

• Compliant with standards

– RDF, RDFS, OWL, SPARQL, Named Graphs, ISO Prolog,
OWL-lite reasoning

• RDFS++ Reasoning

– All of RDFS + owl:sameAs, owl:transitiveProperty,
owl:inverseOf, owl:hasValue

• Full text indexing

• Spatial, Temporal and Social

AllegroGraph and NC dataset

• Loading 100,000,000 triples, including text indexing for

rdf:comment and rdfs:label

– Loading 1:30:23

– Indexing: 15:19

– Total time: 1:45:43

Demo

• Gruff and NC

• AGWebview and NC

Some Observations

Issue [1] - Graphs

In which Graph(s) are my triples?

• Researchers are forced to partition the data through graphs

(the fourth argument of a triple) at load time

• Researchers are forced to remember which graph knows

about what predicates (or risk severe performance penalties)

• AllegroGraph supports federation: you can partition your data

through graphs in one db, or you can have your data in

different dbs on different machines…

Issue [1] - Graphs

In which Graph(s) are my triples?

• Researchers are forced to partition the data through graphs

(the fourth argument of a triple) at load time

• Researchers are forced to remember which graph knows

about what predicates (or risk severe performance penalties)

• AllegroGraph supports federation: you can partition your data

through graphs in one db, or you can have your data in

different dbs on different machines…

Issue [2] – Materializing is pain

An amazing 3.4 M subclass relationships, sometimes to 10 levels deep,

– Reasoning without materialization is painfully slow

– But: Materializing takes hours

– Multiplies the number of triples

– Any serious change to the ontology forces re-materialize

• AllegroGraph we do not need to materialize

• We optimize Prolog queries

– Statistics based

– Predicates are indexed on the fly

– Industry Leading LUBM results *without* materializing

Issue [3] - Numbers

Range queries on numbers and dates is slow if data doesn’t fit in

memory

• Find every subject S for measurement M where the certainty

values are between 0.7 and 0.9

• Millions of numbers in NeuroCommons datasets

• In lab data more numbers than symbols

• In AllegroGraph numbers are *not* in string table but natively

encoded. We support nearly all XML Schema data types.

Issue [4] - Abstractions

• Interesting SPARQL Queries are usually far too long because

SPARQL doesn’t support Abstractions

• AllegroGraph supports full Prolog and Prolog functors

• Franz is considering Common Logic as a more user friendly,

and more declarative way to do queries and rules

SPARQL or Prolog

• 70 % of our users use SPARQL only

– It is the standard QL, good descriptions on the web, quickly growing

community that can help.., many SPARQL end points

• 30 % use Prolog

– Not limited to two arguments

– Range queries are naturally encoded

– Use rules and build layer of abstractions

– Has already query optimizer

• Statistics based, indices on the fly

• No need for static materializing

• Reasoner integrated

– Will be important in the future if rule-ML or Common Logic take off

Thank You

Jans Aasman

Franz Inc.

www.franz.com

