
AllegroGraph
a graph database

Gary King
gwking@franz.com

Overview

What we store

How we store it – the possibilities

Using AllegroGraph

Databases

Put stuff in

Get stuff out

quickly

safely

Stuff

things with attributes and connections

Reasoning, rules, inference

Lots of things. Really. Lots.

Lots of change. all the time.

What stuff in?
Modeling knowledge of assets in an Enterprise

Modeling an extensive river network

Representing 1000’s of different types of objects

Managing biological knowledge

Multimedia Metadata

Bug and version tracking

Collaborative Workspace for Analyst

NASA Constellation
project…

Deals with 1000s of different types of objects:

Machine parts

Processes

Software

People skills

Drawings

Documents

In 100s of distributed databases

Coordinated through registries

To provide meaningful search

A River
Network

Given the polluted
segment S1 find all
the upstream
segments within 50
miles of City1200

Given the polluted
drainage D1 find all
the schools in the
rectangle <x1, y1,
x2, y2> that might
be influenced

Semantic Web...

What stuff out?
Things like this

Things like this only with that

Things like this only with that and the other
thing sorted by that

Things like this linked to that linked to that linked
to that and that and back to things like this

Things like this where that can be inferred from
this other stuff

In particular

We want to ask for

What – Attributes

Where – geospatial

When – events and temporal logic

Whom – Social networks

Find the people I know
that share my taste and
have traveled to
Hawaii during the last
year?

Data – Dissected

Documents (unstructured – mostly)

Key/value

subject/predicate/object

Tuples (by row, by column)

The main data is stored safely away
somewhere else

Batch & Bulk oriented loads

Materialize types and other inferences

Do queries & analysis

Few simultaneous users

System of Analysis

Data changes on a second to second basis

You care about the long time persistence of the
data

You care about transactions and recoverability

You care about concurrent access

You care about continuous querying and
instant reasoning

System of Record

How?

Relational Database Systems

Object Oriented Databases

Key-value Databases

Graph databases (Triple Stores)

Essentially equivalent; the devil is in the details.

RDBMS

Tables

Columns

Indices

Joins

RDBMS
Mature and Standardized (SQL)

Robust, safe, scalable

Great for simple queries that touch only a few tables once

But...

Modeling the world in tables is hard

Table schema is inflexible; early design lock-in

One-to-many and many-to-many relationships add extra tables

Lousy for queries that follow transitive relationships across many
tables (or the same table many times)

Subject – Predicate – Object

Graph DBMS

GDBMS

Easy to put stuff in

No Schema, everything indexed

But...

Young technology

Less robust, less standardized

Our problem

Continually accrue massive interconnected
information with an evolving schema (or no
schema) including text, events, relationships,
locations

Query this data using description logics,
custom rule sets and ask for information on
moving objects, events, and social networks, in
real-time

In particular

We want to ask for

What – Attributes

Where – geospatial

When – events and temporal logic

Whom – Social networks

Find another truck that
can pick up package X at
location Y so that I can
pick up package A at
location B so that we both
will arrive at P before
time T.

RDBMS is not the
answer

A graph database looks like an relational
database with only one table so start with an
RDBMS and add triple-store features

The relational model is too complex for triple-
stores

The relational model is too simplistic for
rapidly evolving schemas and massive
transitive relations

Hadoop is not the answer
Yes, it is a great way to store billions of triples

Hadoop can be used for work that is batch-
oriented rather than real-time, very data-
intensive, and parallelizable.

But what about!

Deeply nested SPARQL or rule based queries
(e.g., Prolog)

Graph & Social network analysis.

Reasoning and inference

Building a triple-
store

Start fresh and add enterprise features

adding triples (with five parts)

Emphasis is on addition (not updates, not
deletion)

Really Simple
Diagram

Triples In

processes to

index

merge

text index

process strings

Indexing
agents

text indexing
agent

string lookup
agent

Triples

Transaction
Log

checkpointer

in-memory
Index Chunk Sorted

Index Chunk

Sorted
Index Chunk

Sorted
Index Chunk

Sorted
Index Chunk

Sorted
Index Chunk

Queries

Merge

AllegroGraph 4.0
ACID Transactions and Recoverability

page management
checkpointing every x-minutes or y-triples

Read/write concurrency

100 % read concurrency at all times
Dynamic and automatic indexing

with column based compression
Resource management

Use all disks, all memory and all processors (one box)

Automatic, or user configurable

AllegroGraph 4.0

Per-predicate Lucene style text indexing

2D and 3D geo-temporal indexing for moving
objects

Social networking toolkit with path finding,
importance measures, etc.

REST protocol for all client interaction

Franz supported: Sesame, Jena, Python,

Community supported: Ruby, Perl, C#

2D and 3D details

AllegroGraph

Performance: Input
$5000 quad-core machine with 32 Gigabytes RAM

with full-text indexing on all strings

dataset Size (Billions) Time
LUBM 8000 1.1 3:48

Billion Triples Challenge 1.15 5:13

2000 Census data 0.99 2:00

3.2 11:01

Thanks
gwking@franz.com

http://www.franz.com

