Description-Logic Knowledge Representation
System Specification

from the KRSS Group of the ARPA
Knowledge Sharing Effort

Peter F. Patel-Schneider, co-chair
Bill Swartout, co-chair

1 November 1993

1 Overview

This is the KRSS group specification for description-logic-based KR systems.
It describes the required behavior for compliant KR systems. This report is
not an overview of description logics, nor is it a rationale for using description
logics in knowledge representation.

The description logic in this specification is based closely on the descrip-
tion logic defined by researchers at DFKI [1]. However, it includes several
other features, notably role closures and rules.

A knowledge base in this specification is a sequence of statements. The
semantics of non-rule, non-closure statements is similar to that in the DFKI
proposal. The semantics of role closures is determined by replacing them, in
sequence, with the best derivable role maximum or the derivable set of fillers.
Rules are treated as epistemic statements, in line with their treatment by
Donini et al [2].

Compliant implementations are required to parse the entire language, but
may replace constructs that they cannot reason about with the closest ap-
proximation that they can handle. Compliant implementations are required
to be complete on a subset of the logic, selected for its easy, but non-trivial,
inferences.

2 Syntax

Major parts of the syntax of knowledge bases are taken from [1]. The top-
level syntactic categories in the specification are descriptions, statements,
knowledge bases, and inquiries.

Throughout the specification, C, R, A, I, Cl, and S, possibly subscripted,
are concepts, roles (including attributes), attributes, individuals, concrete in-
dividuals, and assertions, respectively; N, CN, RN, AN, IN, AIN, DIN, XN, and
GN, possibly subscripted, are names of any sort, concept names, role names
(including attribute names), attribute names, individual names, anonymous
individual names, distinct individual names, rule names, and group names,
respectively; QQ and RR are queries and retrievals, respectively. The syntax
of names, numbers, integers, and strings are the same as in LISP.

The three kinds of descriptions in the specification are concepts, roles
(including attributes), and individuals. Concepts are either concept names
or are formed using the operators in Table 1.! Roles (attributes) are either
role (attribute) names or are formed using the operators in Table 2 (3).
Individuals are either individual names or concrete individuals. Concrete
individuals are either numbers or strings. Individual names are either distinct
individual names or anonymous individual names.

Statements are formed according to Tables 4 and 5.

A knowledge base is a sequence of statements in which there is exactly
one definition of every occurring concept, role, attribute, individual, and
rule name. Concept, role, attribute, and individual names must be defined
before their first use, so no cyclic definitions are allowed. The name spaces
of concepts, roles, individuals, and rules are distinct (i.e., there may be a
concept and a role with the same name). The name space of attributes is a
sub-space of the name space of roles.

Comment lines, starting with a ;" are allowed in knowledge bases.

3 Semantics

The semantics of the description logic is defined in terms of interpretations
and model-sets. The interpretation part of the semantics is mostly taken
from [1]. The idea of (epistemic) model-sets is taken from [2].

!These tables include the abstract form syntax from [1], so that the logic here can be
compared with the many published papers using this abstract form.

Syntax
Input
TOP
BOTTOM
NUMBER
INTEGER
STRING

(and Cl .
or Cl .
not C)

all R C)
some R)
none R)
at-least n R)
at-most n R)
exactly n R)
some R C)
at-least n R C)
at-most n R C)

(
(
(
(
(
(
(
(
(
(
(
(exactly n R C)
(
(
(
(
(
(i
(i
(
(
(
(

Cn)
Co)

equal R; Ry)
not-equal R; Ry)
subset R; R»)
fillers R 1y ... 1)
only-fillers R I; ...
in A C)

is Al

set Iy ... Iy)
minimum Cl)
maximum Cl)
satisfies . . .)

In)

Abstract

T
1

Gn---
(:1 L---
-C
VR:C
IR

TR
>nR
<nR
=nR
JR.C
>nR:C
<nR:C
=nR:C
R =R, M 3R,
Ri # Ry
RiCR;
R:l;m---

nc,
U Cy

NR:1,

{l,.. ., 1a}

Extension

AI

0

the numbers
the integers
the strings

CGIn---nCrt

CGtu---uCt

AT\ C*F

{de A7 |R*(d) C C*}

{d € A7 | R*(d) # 0}

{de AL | RE(d) = 0}
{de AT | |RE(d) > n}

{d € A7 | IR¥(d)| < n}

{d € A7 | IR¥(d)| = n}

{d e AL | RT(d)n C* # 0}

{d e AI | [RE(d) N C*| > n}

{d e AI | [RE(d) N C*| < n}

{d e AI | [RE(d) N Ct| = n}

{d e Aé’ | Ri’(d) = Ry"(d) ARy (d) # 0}
{d € A7 | Ri*(d) # Ro*(d)}

{d e AL | R/ (d) CR7(d)}

{d e AI | RE(d) D {Ii%,...,1,T}}
{d e AI | RE(d) = {I1%,...,1,.7}}
{d € Af | AZ(d) € CT}

{de AT | AT(d) = 1"}

hx, 17}

{de AL :|d>CI*}

{de AL :|d<CI*}

see text

Table 1: Concept Syntax and Semantics

Syntax Extension
Input Abstract
top T AL x AT
bottom 1 0
identity id {(d,d) | d € AL}
(and Ry ... Ry) RiMm---MR, RZIN---NR,?
(or Ry ... Ry) R,U---UR, RZU---URZ
(not R) -R (AL x A7)\ RT
(inverse R) R (RE)~'n (AL x AT)
(restrict R C) R|C RE N (AL x CF)
(compose R; ... R,) Rio---0oR, Ryfo---oR,?
(range C) AT x T
(domain C) (CFN AL x AT
(domain-range C; Cy) CyxCy (CiFN AL x G
(transitive-closure R) R* Ups: (RT)"
(transitive-reflexive-closure R) R* {(d.d) | d € AT} UU,>, (RT)"
(satisfies. . .) see text
Table 2: Role Syntax and Semantics
Syntax Extension

Input Abstract

bottom 1 0

identity id {(d,d) | d € AL}

(and Ay Ry ... R,) A MRM---MR, AZNRIN---NR7Z

(restrict A C) A|C AT N (AL x CT)

(compose A; ... A,) Ajo---0A, Afo---0AZL

Table 3: Attribute Syntax and Semantics

Input

(define-concept CN C) CN=C
(define-primitive-concept CN C) CNCC
(define-disjoint-primitive-concept

(
(
(
(
(
(
(
(
(
(

Syntax
Abstract

CN (GN; ... GN,) C)

define-role RN R) RN =R
define-primitive-role RN R) RNC R
define-attribute AN A) AN = A
define-primitive-attribute AN R) AN C R
define-distinct-individual DIN)
define-anonymous-individual AIN)
define-rule XN CN C)

state S)

close-role IN R)
close-role-fillers IN R)

Semantics

CNf =(C*
CNZ C C*
see text

RNZ = R?
RNZ C R?
ANT = AT
AN? C R?
see text
see text
see text
SI

see text
see text

Table 4: Statement Syntax and Semantics

Syntax Semantics
Input Abstract
(and Sy ... S,) SiTA- NS
(or Sy ... Sp) Sifv---vS?
(not S) =St
(instance INC) IN e C INT € C*
(related INTR) (IN,I) € R (IN? I¥) € R*
(equal IN; IN,) IN;Z = IN,Z

Table 5: Assertion Syntax and Semantics

Semantics are defined directly only for simple knowledge bases. A simple
knowledge base is a knowledge base without any role or role fillers closure
statements or disjoint primitive definitions. Simple knowledge bases can also
contain disjointness statements of the form (disjoint CN; CNjy) where the
concept names have been primitively defined.

A non-simple knowledge base is transformed into a simple knowledge base
by modifying, in order, each role or role filler closure or disjoint primitive
definition as follows:

1. Arole closure, (close-role IN R), is replaced by (instance IN (at-most n R)),
where n is the largest integer such that (instance IN (at-least n R)) fol-
lows from the simplified version of the portion of the knowledge base
before the role closure, provided that there is such an n. Otherwise the
role closure is ignored.

2. A role fillers closure, (close-role-fillers IN R), is replaced by
(instance IN (only-fillers R I; ... I,)), where the [; are the individuals
such that (instance IN (fillers R I;)) follows from the simplified version
of the portion of the knowledge base before the role fillers closure.

3. A disjoint primitive definition,
(define-disjoint-primitive-concept CN (GN; ... GN,) C), is changed to
(define-primitive-concept CN C), (disjoint CN CNy), ..., (disjoint CN CN,,),
where the CN; are the disjoint primitive concepts in the portion of the
knowledge base before this definition that have any of the GN; in their
definition.

An interpretation, Z, consists of a domain, A%, and a mapping, -Z, from
concept names, role names, attribute names, and individual names to their
extensions in the interpretation. The interpretation function is extended to
all concepts, roles, attributes, individuals, and assertions as defined below.

All domains contain the rationals and strings over some alphabet of size
at least 2, this is called the concrete part of the domain, AZ. The rest of the
domain, AZ is called the abstract part of the domain.

The extension of concepts are subsets of AZ. The extension of roles
are set-valued functions from AZ to AT. The extensions of attributes are
single-valued, partial functions from AZ to A%. (The extension of roles and
attributes will sometimes also be treated as the equivalent subset of AZ x

AZ. The extension of attributes are also sometimes treated as set-valued
functions.) The extensions of individual names are elements of the abstract
part of the domain. The extension of a distinct individual name is different
from the extension of all other distinct individual names. The extension of
a number or a string is the appropriate rational or string. The extension of
assertions is either true or false.

The extension of the concept-, role-, and attribute-forming operators is
as in the DFKI proposal [1], extended in the obvious way. See Tables 1, 2,
and 3 for details. The extension of the satisfies constructs is unconstrained
(within A% or AL x A%, of course).

A non-empty set of interpretations is a model-set for a simple knowledge
base if each statement in the simple knowledge base is is true in the set. A
simple knowledge base (any knowledge base) is inconsistent if it (its simple
version) has no model-sets.

A non-rule, non-closure statement is true in a non-empty set of inter-
pretations if it is true in each interpretation in the set. Conditions for the
truth of several types of statements are given in Table 4. The statement
(disjoint CN; CNjy) is true in an interpretation if the extensions of CN; and
CN, are disjoint. Definitions of individuals only serve to distinguish anony-
mous and distinct individual names.

A non-empty set of interpretations makes (define-rule N C; C,) true for a
simple knowledge base if for each individual name, IN, in the simple knowl-
edge base, if IN € C;Z in each interpretation, Z, in the set, then INT € C,*
in each interpretation in the set.

A subsumption relationship, C; = C, (R; = R;3), follows from a knowl-
edge base if C;7 C G (R C Ry7) in each interpretation of each model-set
of the simple knowledge base version of the concept, role, attribute, dis-
jointness, and individual definitions (i.e., no rules or assertions or closures)
in the original knowledge base. An instance relationship, IN € C, follows
from a knowledge base if INf € C%; a role relationship, (IN,1) € R, follows if
(INZ I7) € R?; and an individual equality, IN; = IN,, follows if IN;Z = IN,7;
all in each interpretation of each model-set of the simple knowledge base
version of the original knowledge base.

Query Meaning

(concept-subsumes? C; Cy) G =G
(role-subsumes? R; Ry) Ri — R,
(individual-instance? IN C) IN e C
(individual-related? IN | R) (IN,I) e R
(individual-equal? INy IN,) IN; = IN,
(individual-not-equal? IN; INy) —(IN; = INy)

Table 6: Query Syntax and Semantics

(concept-descendants C)
(concept-offspring C)
(concept-ancestors C)
(concept-parents C)
(concept-instances C)
(concept-direct-instances C)
(role-descendants R)
(role-offspring R)
(role-ancestors R)
(role-parents R)
(individual-types IN)
(individual-direct-types IN)
(individual-fillers IN R)

Table 7: Retrieval Syntax

(validate-true QQ)
(validate-not-true QQ)
(validate-set RR Ny ... N,)

Table 8: Validation Syntax

4 Queries, Retrievals, and Validations

The input language of the specification also contains inquiries about the
knowledge base that is being constructed. The input language is thus a
sequence of statements, queries (see Table 6), retrievals (see Table 7), and
validations (see Table 8).

A query follows from a knowledge base, and returns something other than
the symbol NIL, if its meaning in Table 6 follows from the knowledge base
before the query. Otherwise, the query is false, and returns the symbol NIL.
However, if a concept or role in a subsumption query is incoherent? then the
result of the query is unspecified. Note that determining if a query follows
from a knowledge base is not decidable, nor even recursively enumerable.
Therefore, no implementation can possibly be complete.

Retrievals return sets (as lists) of concept names, role names, individual
names, and concrete individuals.

The retrieval (concept-descendants C) ((concept-ancestors C)) returns
the set of concept names, CN, that are defined in the KB, and for which
CN = C (C = CN) follows from the KB but C = CN (CN = C) does
not. The retrieval (concept-offspring C) ((concept-parents C)) returns the
set of maximal (minimal), under the subsumption relationship in the KB,
elements of the result of (concept-descendants C) ((concept-ancestors C)).
The retrieval (concept-instances C) returns the set of individual names, IN,
that are defined in the KB, and for which IN € C follows from the KB.
The retrieval (concept-direct-instances C) returns the subset of the result of
(concept-instances C) that are not instances of any member of the result of
(concept-descendants C).

Role retrievals are defined analogously.

The retrieval (individual-types IN) returns the set of concept names,
CN, that are defined in the KB and for which IN € CN follows from the
KB. The retrieval (individual-direct-types IN) returns the set of minimal,
under the subsumption relationship in the KB, elements of the result of
(individual-types IN). The retrieval (individual-fillers IN R) returns the set of
individual names, INy, that are defined in the KB and for which (IN,IN;) € R
follows from the KB, unioned with the set of concrete individuals, I, for
which (IN, 1) € R follows from the KB, unless this latter set is infinite, in
which case the retrieval is undefined.

2An incoherent concept or role has empty extension in all model sets.

Validations simply check to see if the query or retrieval returned the
expected result. If so, the validation is true; otherwise, the validation is
false, and may print a message.

5 Compliance

Conforming implementations must parse the entire syntax. If a conforming
implementation cannot internally represent a particular statement, it must
replace it some syntactically-close representable statement and issue a warn-
ing.

For simple knowledge bases, conforming implementations must be sound
for queries. Retrievals must be correct with respect to a definition that
replaces semantic entailment by the (incomplete) subsumption query in the
conforming implementation.

Core knowledge bases are defined as knowledge bases containing only the
following sorts of statements:

(define-concept CN cC)

(define-primitive-concept CN cC)
(define-disjoint-primitive-concept CN (GN; ... GN,) cC)
(define-primitive-attribute AN top)
(define-distinct-individual DIN)

(define-rule XN CN cC)

(state (instance IN cC))

(state (related IN | cR))

Here cC is a core concept, which is either a concept name, TOP, BOTTOM,
NUMBER, INTEGER, or STRING or formed as follows:

(and cCy ... cC,)
all cR cC)

eq (compose ANy; ... ANjp,) (compose ANy; ... ANyy,))
minimum Cl)
(maximum Cl)

(
(
(none cR)
(
(

Also, cR is either a role name or an attribute name. (In the core cR has to be
an attribute, but the number restriction extension allows multi-valued roles
also.)

10

The core syntax was selected to be easy to perform inferences on. Sub-
sumption inferences are polynomial. Other inferences are similarly easy. The
inference for rules is that in the presence of the rule (define-rule XN CN C),
if (instance IN CN) can be derived, then (instance IN C) can also.

Conforming implementations must accept all consistent core knowledge
bases that also have no incoherent concept definitions. The actions of con-
forming implementations on inconsistent knowledge bases or knowledge bases
with incoherent concept definitions are unspecified. It is recommended that
an error be signaled or the knowledge base be reverted to a consistent state
(or both) as soon as an inconsistency is detected. If an incoherent concept
(or role) definition is detected, an error may be signalled and the knowledge
base be reverted, or a warning produced.

Conforming implementations must perform complete reasoning on core
knowledge bases. Note that because subsumption is unspecified for incoher-
ent concepts or roles conformining implementations do not have to perform
complete subsumption on such concepts or roles.

5.1 Extensions

If an implementation is complete with respect to subsumption of incoherent
concepts then it satisfies the “incoherent-subsumption” extension.
If an implementation is complete on the core plus the statements:

(define-primitive-role RN top)
(close-role IN cR)
(close-role-fillers IN cR)

with concepts extended to include (at-least n RN), (at-most n RN), and
(exactly n RN) then it satisfies the “number-restriction” extension.

References

[1] Franz Baader, Hans-Jiirgen Biirckert, Jochen Heinsohn, Bernhard Hol-
lunder, Jiirgen Miiller, Bernhard Nebel, Werner Nutt, and Hans-Jiirgen
Profitlich. Terminological knowledge representation: A proposal for a
terminological logic. A DFKI note, June 1991.

[2] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Andrea Schaerf,
and Werner Nutt. Adding epistemic operators to concept languages.

11

In Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning. Morgan Kaufmann, October
1992.

A Test Suite

This is a simple test suite for compliance with the specification.

;; The following macro calls test the parsing.
(define-concept c1 top)

(define-concept c cl)

(define-role relative top)

(define-primitive-role sibling (and top relative))
(define-primitive-role brother (or (and sibling)))
(define-primitive-role sister (and (or sibling)))
(define-attribute age top)
(define-primitive-attribute name (or relative))

;; defaults to sister as parent:
(define-primitive-role sister2 (and sister brother))
;; Defaults to simple role:

(define-primitive-role relative3 (or sister brother))
(define-primitive-role rl top)
(define-primitive-role r2 top)
(define-primitive-role r3 top)
(define-primitive-role r top)
(define-primitive-attribute al top)
(define-primitive-attribute a2 top)
(define-primitive-attribute a top)

(define-disjoint-primitive-concept animal type top)
(define-disjoint-primitive-concept animal3 type top)
(define-primitive-concept animal2 top)
(define-concept c2a bottom)

(define-concept c2 (all (and relative) c1))
(define-concept c¢3 (all age (or number)))
(define-concept c4 (all age (and integer)))
(define-concept c5 (all name string))

12

(define-concept c6 cb)

(define-concept c7 (and (or cl c2)))
(define-concept c8 (or c1))

(define-concept c9 (or cl c2))
(define-concept c10 (or (and (some r1) (some r2))))
(define-concept cl1l (not top))
(define-concept c12 (not c1))

(define-concept c13 (all r top))
(define-concept c14 (all (not r) top))
(define-concept c15 (some rl))
(define-concept cl16 (some (not rl)))
(define-concept c17 (some r top))
(define-concept c18 (some (not r) top))
(define-concept c19 (at-least 2 r1))
(define-concept c20 (at-least 2 (not rl)))
(define-concept c21 (at-least 2 rl C1))
(define-concept c22 (at-least 2 (not rl) C1))

(define-concept c23 (at-most 2 ril))
(define-concept c24 (at-most 2 (not r1)))
(define-concept c25 (at-most 2 rl1 C1))
(define-concept c26 (at-most 2 (not rl) C1))
(define-concept c27 (exactly 2 rl))
(define-concept ¢28 (exactly 2 (not ri1)))
(define-concept c29 (exactly 2 rl1 C1))
(define-concept ¢30 (exactly 2 (not r1l) C1))

(define-concept c31 (some 1))
(define-concept c32 (some (not r)))
(define-concept ¢33 (none r))
(define-concept ¢34 (none (not r)))

(define-concept c35 (equal (compose al) (compose a2 al)))
(define-concept c36 (equal (compose al) (compose a2 r3)))
(define-concept c37 (equal al a2))

(define-concept ¢38 (equal (range C) a2))

(define-concept c39 (not-equal al a2))

(define-concept c40 (subset al a2))

(define-concept c41 (fills r il i2))

13

(define-concept c42 (fills r 5 6))
(define-concept c43 (fills (and (or r)) 5 6))
(define-concept c44 (fills (range C) il i2))
(define-concept c45 (fills-only r il i2))
(define-concept c46 (fills-only r 5 6))

(define-concept c47 (fills-only (range C) il i2))
(define-concept c48 (in al C1))
(define-concept c49 (in (and A) C))
(define-concept c50 (in (not A) C))
(define-concept c51 (in A (some r)))
(define-concept cb52 (is A I))
(define-concept ¢53 (is (and A) I))
(define-concept c54 (is (not A) I))
(define-concept c55 (set il i2 i3))
(define-concept cbb5a (set 4 5))
(define-concept cb56 (minimum 5))
(define-concept c57 (maximum 5))
(define-concept c58 (satisfies integerp))

(define-distinct-individual mary)
(define-anonymous-individual unnamed-ind)
(define-rule rulel top (at-least 1 ril))
(close-role-fillers mary (and r2))
(close-role-fillers mary r)
(close-role-fillers mary (or r2 r))
(define-distinct-individual fred)
(close-role fred r2)
(define-primitive-concept athlete top)
(state (instance mary athlete))

(state (not (instance mary athlete)))
(state (equal mary joe))

(state (or (instance mary athlete)))
(state (or (instance mary athlete) (equal mary joe)))
(define-distinct-individual joe)

(state (related mary joe brother))

(state (related mary 35 age))

(state (and (instance mary athlete)))

14

(state (and (instance mary athlete) (related mary 35 age)))
(state (and (instance mary athlete) (equal mary joe)))

;; role syntax

(define-concept c59 (all top top))

(define-concept c60 (all bottom top))

(define-concept c61 (all identity top))
(define-concept c62 (all (inverse parent) top))
(define-concept c¢63 (all (restrict r c¢) top))
(define-concept c64 (all (compose rl r2) top))
(define-concept c65 (all (range cl) top))
(define-concept c66 (all (domain cl) top))
(define-concept c67 (all (domain-range cl c2) top))
(define-concept c68 (all (transitive-closure rl) top))
(define-concept c69 (all (transitive-reflexive-closure ril) top))
(define-concept c70 (all (satisfies foo rl) top))

;; Test the queries
(define-primitive-role rl top)
(define-primitive-role r2 top)
(define-primitive-role r2-child r2)
(define-primitive-role r2-child2 r2)
(define-primitive-role r2-descendant r2-child)
(define-primitive-role sibling top)
(define-primitive-attribute age top)
(define-primitive-concept athlete top)
(define-primitive-concept healthy top)
(define-concept healthy-athlete (and athlete healthy))
(define-primitive-concept very-healthy-athlete healthy-athlete)
(define-distinct-individual mary)
(state (and (related mary 35 age)

(related mary herbie sibling)

(related mary joe sibling)

(related mary martin sibling)))

(define-distinct-individual joe)

(state (and (instance joe athlete)
(related mary joe ril)))

15

(close-role-fillers mary ril)
(define-distinct-individual joe-healthy)
(state (and (instance joe-healthy healthy-athlete)))

(concept-subsumes? athlete healthy-athlete)
(concept-subsumes? healthy-athlete athlete)
(concept-subsumes?

(and (at-least 1 r2) (all ril athlete))

(and (at-least 2 r2-child) (all rl healthy-athlete)))
;; one containing an error:

(concept-subsumes?

(and (at-least 1 top) (all rl athlete))

(and (at-least 2 r2-child) (all rl healthy-athlete)))

(role-subsumes? rl r2-child) ;nil
(role-subsumes? r2 r2-child)
(role-subsumes? r2 r2)
(role-subsumes? top r2)

(individual-instance? mary (all rl athlete))
(individual-instance? joe athlete)
(individual-instance? joe (all rl athlete)) ;nil
(individual-instance? joel athlete) ;error

(individual-related? mary joe ril)
(individual-related? mary joe r2)
(individual-related? mary joel r2)

(individual-equal? mary mary)
(individual-equal? mary joe)
(individual-equal? mary mary2)
(individual-equal? mary mary5)

(individual-not-equal? mary mary)
(individual-not-equal? mary joe)

(individual-not-equal? mary mary2)
(individual-not-equal? mary mary5)

16

)

(concept-descendan

(concept-descendants
(concept-descendants
(concept-descendants

(concept-offspring
(concept-offspring
(concept-offspring
(concept-offspring

(concept-ancestors
(concept-ancestors
(concept-ancestors
(concept-ancestors

(concept-parents
(concept-parents
(concept-parents
(concept-parents

b
(
(

(concept-instances
(concept-instances
(concept-instances
(concept-instances
(concept-instances

Retrieval and Validation Macros

athlete)

bottom)

(and athlete healthy))
(some rl))

ts

athlete)

bottom)

(and athlete healthy))
(some r1))

athlete)

bottom)

(and athlete healthy))
(some r1))

athlete)

ottom)
and athlete healthy))
some rl))

athlete)

bottom)
healthy-athlete)

(and athlete healthy))
(some r1))

athlete)

(concept-direct-instances
(concept-direct-instances
(concept-direct-instances
(concept-direct-instances
(concept-direct-instances

bottom)
healthy-athlete)

(and athlete healthy))
(some r1))

(role-descendants
(role-descendants
(role-descendants
(role-descendants

r2)

r2-child)
r2-descendant)

(and r2-descendant ri1))

17

(role-offspring r2)

(role-offspring r2-child)

(role-offspring r2-descendant)
(role-offspring (and r2-descendant ri))

(role—ancestors r2)

(role-ancestors r2-child)

(role-ancestors r2-descendant)
(role-ancestors (and r2-descendant rl))

(role-parents r2)

(role-parents r2-child)
(role-parents r2-descendant)
(role-parents (and r2-descendant ril))

(individual-types joe)
(individual-types joe-healthy)
(individual-types mary)
(individual-types joel)

(individual-direct-types
(individual-direct-types
(individual-direct-types
(individual-direct-types

(individual-fillers
(individual-fillers
(individual-fillers
(individual-fillers
(individual-fillers
(individual-fillers

mary
mary
mary
joel
mary
mary

joe)
joe-healthy)
mary)

joel)

ril)
age)
r2)
r2)
r21)
(not r21))

(validate-true (role-subsumes? rl r2-child)) ;nil
(validate-true (role-subsumes? r2 r2-child))

(validate-not-true (role-subsumes? rl r2-child)) ;nil
(validate—not-true (role-subsumes? r2 r2-child))

18

(validate-set (individual-fillers mary sibling) joe martin herbie)
(validate-set (individual-fillers mary sibling) martin herbie)

19

