
Description-Logic Knowledge RepresentationSystem Speci�cationfrom the KRSS Group of the ARPAKnowledge Sharing E�ortPeter F. Patel-Schneider, co-chairBill Swartout, co-chair1 November 19931 OverviewThis is the KRSS group speci�cation for description-logic-based KR systems.It describes the required behavior for compliant KR systems. This report isnot an overview of description logics, nor is it a rationale for using descriptionlogics in knowledge representation.The description logic in this speci�cation is based closely on the descrip-tion logic de�ned by researchers at DFKI [1]. However, it includes severalother features, notably role closures and rules.A knowledge base in this speci�cation is a sequence of statements. Thesemantics of non-rule, non-closure statements is similar to that in the DFKIproposal. The semantics of role closures is determined by replacing them, insequence, with the best derivable role maximum or the derivable set of �llers.Rules are treated as epistemic statements, in line with their treatment byDonini et al [2].Compliant implementations are required to parse the entire language, butmay replace constructs that they cannot reason about with the closest ap-proximation that they can handle. Compliant implementations are requiredto be complete on a subset of the logic, selected for its easy, but non-trivial,inferences. 1

2 SyntaxMajor parts of the syntax of knowledge bases are taken from [1]. The top-level syntactic categories in the speci�cation are descriptions, statements,knowledge bases, and inquiries.Throughout the speci�cation, C, R, A, I, CI, and S, possibly subscripted,are concepts, roles (including attributes), attributes, individuals, concrete in-dividuals, and assertions, respectively; N, CN, RN, AN, IN, AIN, DIN, XN, andGN, possibly subscripted, are names of any sort, concept names, role names(including attribute names), attribute names, individual names, anonymousindividual names, distinct individual names, rule names, and group names,respectively; QQ and RR are queries and retrievals, respectively. The syntaxof names, numbers, integers, and strings are the same as in LISP.The three kinds of descriptions in the speci�cation are concepts, roles(including attributes), and individuals. Concepts are either concept namesor are formed using the operators in Table 1.1 Roles (attributes) are eitherrole (attribute) names or are formed using the operators in Table 2 (3).Individuals are either individual names or concrete individuals. Concreteindividuals are either numbers or strings. Individual names are either distinctindividual names or anonymous individual names.Statements are formed according to Tables 4 and 5.A knowledge base is a sequence of statements in which there is exactlyone de�nition of every occurring concept, role, attribute, individual, andrule name. Concept, role, attribute, and individual names must be de�nedbefore their �rst use, so no cyclic de�nitions are allowed. The name spacesof concepts, roles, individuals, and rules are distinct (i.e., there may be aconcept and a role with the same name). The name space of attributes is asub-space of the name space of roles.Comment lines, starting with a `;', are allowed in knowledge bases.3 SemanticsThe semantics of the description logic is de�ned in terms of interpretationsand model-sets. The interpretation part of the semantics is mostly takenfrom [1]. The idea of (epistemic) model-sets is taken from [2].1These tables include the abstract form syntax from [1], so that the logic here can becompared with the many published papers using this abstract form.2

Syntax ExtensionInput AbstractTOP > �IBOTTOM ? ;NUMBER the numbersINTEGER the integersSTRING the strings(and C1 : : : Cn) C1 u � � � u Cn C1I \ � � � \ CnI(or C1 : : : Cn) C1 t � � � t Cn C1I [� � � [CnI(not C) :C �I n CI(all R C) 8R:C fd 2 �Ia j RI(d) � CIg(some R) 9R fd 2 �Ia j RI(d) 6= ;g(none R) " R fd 2 �Ia j RI(d) = ;g(at-least n R) �n R fd 2 �Ia j jRI(d)j � ng(at-most n R) �n R fd 2 �Ia j jRI(d)j � ng(exactly n R) =n R fd 2 �Ia j jRI(d)j = ng(some R C) 9R:C fd 2 �Ia j RI(d) \ CI 6= ;g(at-least n R C) �n R:C fd 2 �Ia j jRI(d) \ CI j � ng(at-most n R C) �n R:C fd 2 �Ia j jRI(d) \ CI j � ng(exactly n R C) =n R:C fd 2 �Ia j jRI(d) \ CI j = ng(equal R1 R2) R1=R2 u 9R1 fd 2 �Ia j R1I(d) = R2I(d) ^ R1I(d) 6= ;g(not-equal R1 R2) R1 6=R2 fd 2 �Ia j R1I(d) 6= R2I(d)g(subset R1 R2) R1�R2 fd 2 �Ia j R1I(d) � R2I(d)g(�llers R I1 : : : In) R : I1 u � � � u R : In fd 2 �Ia j RI(d) � fI1I; : : : ; InIgg(only-�llers R I1 : : : In) fd 2 �Ia j RI(d) = fI1I ; : : : ; InIgg(in A C) A :C fd 2 �Ia j AI(d) 2 CIg(is A I) A : I fd 2 �Ia j AI(d) = IIg(set I1 : : : In) fI1; : : : ; Ing fI1I; : : : ; InIg(minimum CI) fd 2 �Ic :j d � CIIg(maximum CI) fd 2 �Ic :j d � CIIg(satis�es : : :) see textTable 1: Concept Syntax and Semantics3

Syntax ExtensionInput Abstracttop > �Ia ��Ibottom ? ;identity id f(d; d) j d 2 �Iag(and R1 : : : Rn) R1 u � � � u Rn R1I \ � � � \ RnI(or R1 : : : Rn) R1 t � � � t Rn R1I [� � � [RnI(not R) :R (�Ia ��I) n RI(inverse R) R�1 (RI)�1 \ (�Ia ��I)(restrict R C) R jC RI \ (�Ia � CI)(compose R1 : : : Rn) R1� � � � �Rn R1I � � � � � RnI(range C) �Ia � CI(domain C) (CI \�Ia)��I(domain-range C1 C2) C1�C2 (C1I \�Ia)� C2I(transitive-closure R) R+ Sn�1(RI)n(transitive-re
exive-closure R) R� f(d; d) j d 2 �Iag [Sn�1(RI)n(satis�es : : :) see textTable 2: Role Syntax and Semantics
Syntax ExtensionInput Abstractbottom ? ;identity id f(d; d) j d 2 �Iag(and A1 R2 : : : Rn) A1 u R2 u � � � u Rn A1I \ R2I \ � � � \ RnI(restrict A C) A jC AI \ (�Ia � CI)(compose A1 : : : An) A1� � � � �An A1I � � � � � AnITable 3: Attribute Syntax and Semantics4

Syntax SemanticsInput Abstract(de�ne-concept CN C) CN := C CNI = CI(de�ne-primitive-concept CN C) CN v C CNI � CI(de�ne-disjoint-primitive-concept see textCN (GN1 : : : GNn) C)(de�ne-role RN R) RN := R RNI = RI(de�ne-primitive-role RN R) RN v R RNI � RI(de�ne-attribute AN A) AN := A ANI = AI(de�ne-primitive-attribute AN R) AN v R ANI � RI(de�ne-distinct-individual DIN) see text(de�ne-anonymous-individual AIN) see text(de�ne-rule XN CN C) see text(state S) SI(close-role IN R) see text(close-role-�llers IN R) see textTable 4: Statement Syntax and Semantics
Syntax SemanticsInput Abstract(and S1 : : : Sn) S1I ^ � � � ^ SnI(or S1 : : : Sn) S1I _ � � � _ SnI(not S) :SI(instance IN C) IN 2 C INI 2 CI(related IN I R) hIN; Ii 2 R hINI; IIi 2 RI(equal IN1 IN2) IN1I = IN2ITable 5: Assertion Syntax and Semantics5

Semantics are de�ned directly only for simple knowledge bases. A simpleknowledge base is a knowledge base without any role or role �llers closurestatements or disjoint primitive de�nitions. Simple knowledge bases can alsocontain disjointness statements of the form (disjoint CN1 CN2) where theconcept names have been primitively de�ned.A non-simple knowledge base is transformed into a simple knowledge baseby modifying, in order, each role or role �ller closure or disjoint primitivede�nition as follows:1. A role closure, (close-role IN R), is replaced by (instance IN (at-most n R)),where n is the largest integer such that (instance IN (at-least n R)) fol-lows from the simpli�ed version of the portion of the knowledge basebefore the role closure, provided that there is such an n. Otherwise therole closure is ignored.2. A role �llers closure, (close-role-�llers IN R), is replaced by(instance IN (only-�llers R I1 : : : In)), where the Ii are the individualssuch that (instance IN (�llers R Ii)) follows from the simpli�ed versionof the portion of the knowledge base before the role �llers closure.3. A disjoint primitive de�nition,(de�ne-disjoint-primitive-concept CN (GN1 : : : GNn) C), is changed to(de�ne-primitive-concept CN C), (disjoint CN CN1), . . . , (disjoint CN CNm),where the CNi are the disjoint primitive concepts in the portion of theknowledge base before this de�nition that have any of the GNj in theirde�nition.An interpretation, I, consists of a domain, �I , and a mapping, �I , fromconcept names, role names, attribute names, and individual names to theirextensions in the interpretation. The interpretation function is extended toall concepts, roles, attributes, individuals, and assertions as de�ned below.All domains contain the rationals and strings over some alphabet of sizeat least 2, this is called the concrete part of the domain, �Ic . The rest of thedomain, �Ia , is called the abstract part of the domain.The extension of concepts are subsets of �I . The extension of rolesare set-valued functions from �Ia to �I. The extensions of attributes aresingle-valued, partial functions from �Ia to �I. (The extension of roles andattributes will sometimes also be treated as the equivalent subset of �Ia �6

�I . The extension of attributes are also sometimes treated as set-valuedfunctions.) The extensions of individual names are elements of the abstractpart of the domain. The extension of a distinct individual name is di�erentfrom the extension of all other distinct individual names. The extension ofa number or a string is the appropriate rational or string. The extension ofassertions is either true or false.The extension of the concept-, role-, and attribute-forming operators isas in the DFKI proposal [1], extended in the obvious way. See Tables 1, 2,and 3 for details. The extension of the satis�es constructs is unconstrained(within �I or �Ia ��I , of course).A non-empty set of interpretations is a model-set for a simple knowledgebase if each statement in the simple knowledge base is is true in the set. Asimple knowledge base (any knowledge base) is inconsistent if it (its simpleversion) has no model-sets.A non-rule, non-closure statement is true in a non-empty set of inter-pretations if it is true in each interpretation in the set. Conditions for thetruth of several types of statements are given in Table 4. The statement(disjoint CN1 CN2) is true in an interpretation if the extensions of CN1 andCN2 are disjoint. De�nitions of individuals only serve to distinguish anony-mous and distinct individual names.A non-empty set of interpretations makes (de�ne-rule N C1 C2) true for asimple knowledge base if for each individual name, IN, in the simple knowl-edge base, if INI 2 C1I in each interpretation, I, in the set, then INI 2 C2Iin each interpretation in the set.A subsumption relationship, C1 =) C2 (R1 =) R2), follows from a knowl-edge base if C1I � C2I (R1I � R2I) in each interpretation of each model-setof the simple knowledge base version of the concept, role, attribute, dis-jointness, and individual de�nitions (i.e., no rules or assertions or closures)in the original knowledge base. An instance relationship, IN 2 C, followsfrom a knowledge base if INI 2 CI ; a role relationship, hIN; Ii 2 R, follows ifhINI; IIi 2 RI; and an individual equality, IN1 = IN2, follows if IN1I = IN2I ;all in each interpretation of each model-set of the simple knowledge baseversion of the original knowledge base.
7

Query Meaning(concept-subsumes? C1 C2) C1 =) C2(role-subsumes? R1 R2) R1 =) R2(individual-instance? IN C) IN 2 C(individual-related? IN I R) hIN; Ii 2 R(individual-equal? IN1 IN2) IN1 = IN2(individual-not-equal? IN1 IN2) :(IN1 = IN2)Table 6: Query Syntax and Semantics(concept-descendants C)(concept-o�spring C)(concept-ancestors C)(concept-parents C)(concept-instances C)(concept-direct-instances C)(role-descendants R)(role-o�spring R)(role-ancestors R)(role-parents R)(individual-types IN)(individual-direct-types IN)(individual-�llers IN R)Table 7: Retrieval Syntax(validate-true QQ)(validate-not-true QQ)(validate-set RR N1 : : : Nn)Table 8: Validation Syntax8

4 Queries, Retrievals, and ValidationsThe input language of the speci�cation also contains inquiries about theknowledge base that is being constructed. The input language is thus asequence of statements, queries (see Table 6), retrievals (see Table 7), andvalidations (see Table 8).A query follows from a knowledge base, and returns something other thanthe symbol NIL, if its meaning in Table 6 follows from the knowledge basebefore the query. Otherwise, the query is false, and returns the symbol NIL.However, if a concept or role in a subsumption query is incoherent2 then theresult of the query is unspeci�ed. Note that determining if a query followsfrom a knowledge base is not decidable, nor even recursively enumerable.Therefore, no implementation can possibly be complete.Retrievals return sets (as lists) of concept names, role names, individualnames, and concrete individuals.The retrieval (concept-descendants C) ((concept-ancestors C)) returnsthe set of concept names, CN, that are de�ned in the KB, and for whichCN =) C (C =) CN) follows from the KB but C =) CN (CN =) C) doesnot. The retrieval (concept-o�spring C) ((concept-parents C)) returns theset of maximal (minimal), under the subsumption relationship in the KB,elements of the result of (concept-descendants C) ((concept-ancestors C)).The retrieval (concept-instances C) returns the set of individual names, IN,that are de�ned in the KB, and for which IN 2 C follows from the KB.The retrieval (concept-direct-instances C) returns the subset of the result of(concept-instances C) that are not instances of any member of the result of(concept-descendants C).Role retrievals are de�ned analogously.The retrieval (individual-types IN) returns the set of concept names,CN, that are de�ned in the KB and for which IN 2 CN follows from theKB. The retrieval (individual-direct-types IN) returns the set of minimal,under the subsumption relationship in the KB, elements of the result of(individual-types IN). The retrieval (individual-�llers IN R) returns the set ofindividual names, IN1, that are de�ned in the KB and for which hIN; IN1i 2 Rfollows from the KB, unioned with the set of concrete individuals, Ic, forwhich hIN; Ici 2 R follows from the KB, unless this latter set is in�nite, inwhich case the retrieval is unde�ned.2An incoherent concept or role has empty extension in all model sets.9

Validations simply check to see if the query or retrieval returned theexpected result. If so, the validation is true; otherwise, the validation isfalse, and may print a message.5 ComplianceConforming implementations must parse the entire syntax. If a conformingimplementation cannot internally represent a particular statement, it mustreplace it some syntactically-close representable statement and issue a warn-ing.For simple knowledge bases, conforming implementations must be soundfor queries. Retrievals must be correct with respect to a de�nition thatreplaces semantic entailment by the (incomplete) subsumption query in theconforming implementation.Core knowledge bases are de�ned as knowledge bases containing only thefollowing sorts of statements:(de�ne-concept CN cC)(de�ne-primitive-concept CN cC)(de�ne-disjoint-primitive-concept CN (GN1 : : : GNn) cC)(de�ne-primitive-attribute AN top)(de�ne-distinct-individual DIN)(de�ne-rule XN CN cC)(state (instance IN cC))(state (related IN I cR))Here cC is a core concept, which is either a concept name, TOP, BOTTOM,NUMBER, INTEGER, or STRING or formed as follows:(and cC1 : : : cCn)(all cR cC)(some cR)(none cR)(eq (compose AN11 : : : AN1n) (compose AN21 : : : AN2m))(minimum CI)(maximum CI)Also, cR is either a role name or an attribute name. (In the core cR has to bean attribute, but the number restriction extension allows multi-valued rolesalso.) 10

The core syntax was selected to be easy to perform inferences on. Sub-sumption inferences are polynomial. Other inferences are similarly easy. Theinference for rules is that in the presence of the rule (de�ne-rule XN CN C),if (instance IN CN) can be derived, then (instance IN C) can also.Conforming implementations must accept all consistent core knowledgebases that also have no incoherent concept de�nitions. The actions of con-forming implementations on inconsistent knowledge bases or knowledge baseswith incoherent concept de�nitions are unspeci�ed. It is recommended thatan error be signaled or the knowledge base be reverted to a consistent state(or both) as soon as an inconsistency is detected. If an incoherent concept(or role) de�nition is detected, an error may be signalled and the knowledgebase be reverted, or a warning produced.Conforming implementations must perform complete reasoning on coreknowledge bases. Note that because subsumption is unspeci�ed for incoher-ent concepts or roles conformining implementations do not have to performcomplete subsumption on such concepts or roles.5.1 ExtensionsIf an implementation is complete with respect to subsumption of incoherentconcepts then it satis�es the \incoherent-subsumption" extension.If an implementation is complete on the core plus the statements:(de�ne-primitive-role RN top)(close-role IN cR)(close-role-�llers IN cR)with concepts extended to include (at-least n RN), (at-most n RN), and(exactly n RN) then it satis�es the \number-restriction" extension.References[1] Franz Baader, Hans-J�urgen B�urckert, Jochen Heinsohn, Bernhard Hol-lunder, J�urgen M�uller, Bernhard Nebel, Werner Nutt, and Hans-J�urgenPro�tlich. Terminological knowledge representation: A proposal for aterminological logic. A DFKI note, June 1991.[2] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Andrea Schaerf,and Werner Nutt. Adding epistemic operators to concept languages.11

In Proceedings of the Third International Conference on Principles ofKnowledge Representation and Reasoning. Morgan Kaufmann, October1992.A Test SuiteThis is a simple test suite for compliance with the speci�cation.;; The following macro calls test the parsing.(define-concept c1 top)(define-concept c c1)(define-role relative top)(define-primitive-role sibling (and top relative))(define-primitive-role brother (or (and sibling)))(define-primitive-role sister (and (or sibling)))(define-attribute age top)(define-primitive-attribute name (or relative));; defaults to sister as parent:(define-primitive-role sister2 (and sister brother));; Defaults to simple role:(define-primitive-role relative3 (or sister brother))(define-primitive-role r1 top)(define-primitive-role r2 top)(define-primitive-role r3 top)(define-primitive-role r top)(define-primitive-attribute a1 top)(define-primitive-attribute a2 top)(define-primitive-attribute a top)(define-disjoint-primitive-concept animal type top)(define-disjoint-primitive-concept animal3 type top)(define-primitive-concept animal2 top)(define-concept c2a bottom)(define-concept c2 (all (and relative) c1))(define-concept c3 (all age (or number)))(define-concept c4 (all age (and integer)))(define-concept c5 (all name string))12

(define-concept c6 c5)(define-concept c7 (and (or c1 c2)))(define-concept c8 (or c1))(define-concept c9 (or c1 c2))(define-concept c10 (or (and (some r1) (some r2))))(define-concept c11 (not top))(define-concept c12 (not c1))(define-concept c13 (all r top))(define-concept c14 (all (not r) top))(define-concept c15 (some r1))(define-concept c16 (some (not r1)))(define-concept c17 (some r top))(define-concept c18 (some (not r) top))(define-concept c19 (at-least 2 r1))(define-concept c20 (at-least 2 (not r1)))(define-concept c21 (at-least 2 r1 C1))(define-concept c22 (at-least 2 (not r1) C1))(define-concept c23 (at-most 2 r1))(define-concept c24 (at-most 2 (not r1)))(define-concept c25 (at-most 2 r1 C1))(define-concept c26 (at-most 2 (not r1) C1))(define-concept c27 (exactly 2 r1))(define-concept c28 (exactly 2 (not r1)))(define-concept c29 (exactly 2 r1 C1))(define-concept c30 (exactly 2 (not r1) C1))(define-concept c31 (some r))(define-concept c32 (some (not r)))(define-concept c33 (none r))(define-concept c34 (none (not r)))(define-concept c35 (equal (compose a1) (compose a2 a1)))(define-concept c36 (equal (compose a1) (compose a2 r3)))(define-concept c37 (equal a1 a2))(define-concept c38 (equal (range C) a2))(define-concept c39 (not-equal a1 a2))(define-concept c40 (subset a1 a2))(define-concept c41 (fills r i1 i2))13

(define-concept c42 (fills r 5 6))(define-concept c43 (fills (and (or r)) 5 6))(define-concept c44 (fills (range C) i1 i2))(define-concept c45 (fills-only r i1 i2))(define-concept c46 (fills-only r 5 6))(define-concept c47 (fills-only (range C) i1 i2))(define-concept c48 (in a1 C1))(define-concept c49 (in (and A) C))(define-concept c50 (in (not A) C))(define-concept c51 (in A (some r)))(define-concept c52 (is A I))(define-concept c53 (is (and A) I))(define-concept c54 (is (not A) I))(define-concept c55 (set i1 i2 i3))(define-concept c55a (set 4 5))(define-concept c56 (minimum 5))(define-concept c57 (maximum 5))(define-concept c58 (satisfies integerp))(define-distinct-individual mary)(define-anonymous-individual unnamed-ind)(define-rule rule1 top (at-least 1 r1))(close-role-fillers mary (and r2))(close-role-fillers mary r)(close-role-fillers mary (or r2 r))(define-distinct-individual fred)(close-role fred r2)(define-primitive-concept athlete top)(state (instance mary athlete))(state (not (instance mary athlete)))(state (equal mary joe))(state (or (instance mary athlete)))(state (or (instance mary athlete) (equal mary joe)))(define-distinct-individual joe)(state (related mary joe brother))(state (related mary 35 age))(state (and (instance mary athlete)))14

(state (and (instance mary athlete) (related mary 35 age)))(state (and (instance mary athlete) (equal mary joe)));; role syntax(define-concept c59 (all top top))(define-concept c60 (all bottom top))(define-concept c61 (all identity top))(define-concept c62 (all (inverse parent) top))(define-concept c63 (all (restrict r c) top))(define-concept c64 (all (compose r1 r2) top))(define-concept c65 (all (range c1) top))(define-concept c66 (all (domain c1) top))(define-concept c67 (all (domain-range c1 c2) top))(define-concept c68 (all (transitive-closure r1) top))(define-concept c69 (all (transitive-reflexive-closure r1) top))(define-concept c70 (all (satisfies foo r1) top));; Test the queries(define-primitive-role r1 top)(define-primitive-role r2 top)(define-primitive-role r2-child r2)(define-primitive-role r2-child2 r2)(define-primitive-role r2-descendant r2-child)(define-primitive-role sibling top)(define-primitive-attribute age top)(define-primitive-concept athlete top)(define-primitive-concept healthy top)(define-concept healthy-athlete (and athlete healthy))(define-primitive-concept very-healthy-athlete healthy-athlete)(define-distinct-individual mary)(state (and (related mary 35 age)(related mary herbie sibling)(related mary joe sibling)(related mary martin sibling)))(define-distinct-individual joe)(state (and (instance joe athlete)(related mary joe r1)))15

(close-role-fillers mary r1)(define-distinct-individual joe-healthy)(state (and (instance joe-healthy healthy-athlete)))(concept-subsumes? athlete healthy-athlete)(concept-subsumes? healthy-athlete athlete)(concept-subsumes?(and (at-least 1 r2) (all r1 athlete))(and (at-least 2 r2-child) (all r1 healthy-athlete)));; one containing an error:(concept-subsumes?(and (at-least 1 top) (all r1 athlete))(and (at-least 2 r2-child) (all r1 healthy-athlete)))(role-subsumes? r1 r2-child) ;nil(role-subsumes? r2 r2-child)(role-subsumes? r2 r2)(role-subsumes? top r2)(individual-instance? mary (all r1 athlete))(individual-instance? joe athlete)(individual-instance? joe (all r1 athlete)) ;nil(individual-instance? joel athlete) ;error(individual-related? mary joe r1)(individual-related? mary joe r2)(individual-related? mary joel r2)(individual-equal? mary mary)(individual-equal? mary joe)(individual-equal? mary mary2)(individual-equal? mary mary5)(individual-not-equal? mary mary)(individual-not-equal? mary joe)(individual-not-equal? mary mary2)(individual-not-equal? mary mary5)16

;; Retrieval and Validation Macros(concept-descendants athlete)(concept-descendants bottom)(concept-descendants (and athlete healthy))(concept-descendants (some r1))(concept-offspring athlete)(concept-offspring bottom)(concept-offspring (and athlete healthy))(concept-offspring (some r1))(concept-ancestors athlete)(concept-ancestors bottom)(concept-ancestors (and athlete healthy))(concept-ancestors (some r1))(concept-parents athlete)(concept-parents bottom)(concept-parents (and athlete healthy))(concept-parents (some r1))(concept-instances athlete)(concept-instances bottom)(concept-instances healthy-athlete)(concept-instances (and athlete healthy))(concept-instances (some r1))(concept-direct-instances athlete)(concept-direct-instances bottom)(concept-direct-instances healthy-athlete)(concept-direct-instances (and athlete healthy))(concept-direct-instances (some r1))(role-descendants r2)(role-descendants r2-child)(role-descendants r2-descendant)(role-descendants (and r2-descendant r1))17

(role-offspring r2)(role-offspring r2-child)(role-offspring r2-descendant)(role-offspring (and r2-descendant r1))(role-ancestors r2)(role-ancestors r2-child)(role-ancestors r2-descendant)(role-ancestors (and r2-descendant r1))(role-parents r2)(role-parents r2-child)(role-parents r2-descendant)(role-parents (and r2-descendant r1))(individual-types joe)(individual-types joe-healthy)(individual-types mary)(individual-types joel)(individual-direct-types joe)(individual-direct-types joe-healthy)(individual-direct-types mary)(individual-direct-types joel)(individual-fillers mary r1)(individual-fillers mary age)(individual-fillers mary r2)(individual-fillers joel r2)(individual-fillers mary r2l)(individual-fillers mary (not r2l))(validate-true (role-subsumes? r1 r2-child)) ;nil(validate-true (role-subsumes? r2 r2-child))(validate-not-true (role-subsumes? r1 r2-child)) ;nil(validate-not-true (role-subsumes? r2 r2-child))18

(validate-set (individual-fillers mary sibling) joe martin herbie)(validate-set (individual-fillers mary sibling) martin herbie)

19

