
 FFrraannzz SSeemmaannttiicc TTeecchhnnoollooggiieess

Unification of Geospatial Reasoning, Temporal Logic, &

Social Network Analysis in a Semantic Web 3.0 Database
Jans Aasman

Franz, Inc.

2201 Broadway, Suite 715

Oakland, CA 94612

+1-510-452-2000

ja@franz.com

ABSTRACT
This paper is about a new type of event database that makes it

efficient to reason about things, people, companies, relationships

between people and companies, and about places and events. This

event database is built on top of a scalable distributed RDF triple

store that can handle literally billions of events. Like objects,

events have at least one actor, but usually more, a start-time and

possibly an end-time, a place where the event happened, and the

type of the event. An event can have many additional properties

and annotations.

For example, telephone call detail records, email records,

financial transactions, purchases, hospital visits, insurance claims,

library records, etc. can all be viewed as events. On top of this

event database we implemented very efficient geospatial and

temporal queries, an extensive social network analysis library and

simplified description logic. This paper focuses on a query

framework that makes it easy to combine all of the

aforementioned capabilities in a user friendly query language.

Keywords

Geotemporal logic, geospatial reasoning, RDF database, graph

database, RDFS, OWL, SPARQL, social network analytics,

business intelligence, event-based systems, event-driven

architectures, metadata, semantic technologies.

1. INTRODUCTION
This paper describes the design and use of a unifying query

framework for geospatial reasoning, temporal logic, social

network analytics, RDFS and OWL in Event-based systems. In

this introduction we will first go into why we need such a

framework and the requirements for such a framework.

The reason for such a framework can be answered by looking at

the vision of the semantic web and understanding how companies

use semantic technologies. Tim Berners-Lee, James Hendler and

Ora Lassila’s Scientific American article (May, 2000) [1]

provides a compelling vision of the Semantic Web. It contains

some interesting use cases for what the Semantic Web will bring.

These use cases assume that software agents know how to roam

the web and reason over things, people, companies, relationships

between people and companies and about places and events.

Clearly these agents need a query capability that supports a

combination of description logic, geospatial reasoning, temporal

reasoning, and knowledge about the social relationships between

people.

The commercial vendors of Semantic Technologies also see a

number of use cases that all center around events and require the

aforementioned query capabilities. We currently see companies

using large data warehouses with very disparate RDF based triple

stores describing various types of events where each event has at

least two actors, usually a begin and end time, and very often a

geospatial component. These events are literally everywhere: in

Health Care applications we see hospital visits, drugstore visits,

and medical procedures. In the Communications Industry we see

telephone call detail records, now with location too. An email and

calendar database of a large company is nothing more than a

social network database filled with events in time and, in many

cases, space. In the Financial Industry every transaction is

essentially an event. In the Insurance Industry claims are

important events and they desperately need more activity

recognition. In the Homeland Security Industry basically

everything revolves around events and actors. The REWERSE

program from the 6th Framework Programme of the EU

Commission [2] is one of the few systematic efforts to combine

RDFS/OWL with geotemporal reasoning, although the social

aspect hasn't been addressed yet. The recent book “The Geospatial

Web” [3] provides currently the best state of the art overview of

how to work with people and events on a web scale and what kind

of applications we might expect in the near future.

1.1 Framework Requirements
The Semantic Web community has made great strides in the area

of ontologies and description logic, and some initial work in the

areas of geospatial reasoning [4], temporal reasoning [5], social

network analysis [15], and event ontologies [7]. All of this is

based on RDF as the basic data representation. Based on this

W3C standard the combination of all these different reasoning

capabilities in one unified framework will propel further industry

adoption of Semantic Technology. Given that we’ve seen a direct

need for query capabilities that handle

geospatial/temporal/social/rdfs/owl, we began designing a

framework. The main requirements we identified were:

1. User and programmer friendly: We wanted the

framework to be an extension of SPARQL, with

SPARQL as the foundation. Certainly the framework

should not be anymore complex than SPARQL.

SPARQL is relatively user friendly, and as languages go,

the adoption rate is such that one could make the

argument that it is good enough.

2. Implementer friendly: The design that we propose in this

paper is a work in progress. We need many people to

experiment with this framework such that the Semantic

Web community can converge on a standard.

3. Efficient: Given that we work with very large databases

with millions of events where the response time has to be

on the sub second level, the implementation of the query

language and query engine needs to be very fast

4. We want to work the query language on distributed

databases. Currently we’ve designed the query engine to

work on federations of triple stores. Once we develop

efficient caching techniques for distributed RDF

knowledge stores residing all over the web, it will also be

efficient for agents that need to roam the web.

5. Practical & Easily Extendible: We want the API to be

such that it can be easily modified to allow for ongoing

experimentation.

6. Works well with RDFS and OWL reasoning.

In the rest of this paper, we discuss our Event Ontology, the use

of RDFS and OWL reasoning for events, our query API for

temporal logic, our query API for geospatial reasoning, our API to

a set of Social Network Algorithms, and how we combine it all in

our query language.

2. EVENT ONTOLOGY
We examined a several event ontologies that have been published

and are in use. Cyc [6] has a very elaborate event system. An

example of a simple one that comes close to what we use was

created by the Centre for Digital Music in Queen Mary,

University of London [7]. We also looked at the type of industry

applications that we envision and came up with a fairly simple set

of common predicates that typically constitute an event.

Here is an example of an event:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix event: <http://www.acme321.com/ontology/0.1/> .

@prefix geo: <http://www.geonames.org/#>.

event:event100100023

 rdf:type event:MobileTelephoneCall

 event:actor event:Person1

 event:actor event:Person2

 geo:longitude 37.223231

 geo:latitude -122.0177743

 event:start "2007-10-10T12:00:01"

 event:end ""2007-10-10T12:20:01"

Figure 1. An Example of Common Event Properties

As is clear from figure 1, we use:

• Type. In most applications it is advisable to add an

rdf:type to the event. The type itself can of course be a

subclass of more general types. We found that even in

practical situations we do need RDFS entailment

reasoning to work with typed events. Example: in an

RDF application dealing with meeting and calendar

information, we used a class hierarchy for various types

of meetings (general-meeting, work-meeting, personal-

meeting, informal-meeting, interview, etc.)

• Actors. Although it is conceivable to have events

without actors, say a sensor reading, we are interested in

those types of events where we have multiple actors.

Some examples include a telephone call, an email, a

purchase order, a meeting, a hospital visit, etc. We are

considering the FOAF [8] ontology and namespaces for

actors.

• Longitude, Latitude, and Place References. You

usually want to reason about where something

happened. Sometimes you have a place name,

sometimes you have the longitude and latitude. We use

the geonames namespace of the wonderful GeoNames

database [9] with over 6 million places on earth

encoded in RDF.

• Start Time, End Time, and Duration. You
usually want to reason about when something happened.

We choose to use start time and end time, and we can

deal with durations too. The dates that we use are

defined by the ISO 8061 specification [10].

3. PROPOSED QUERY LANGUAGE
The standard syntax of our queries closely resembles SPARQL

except that namespaces are globally defined before performing the

queries. Actually, the query framework is currently implemented

in Prolog; however, the Prolog layer is very thin. We implement

all the underlying mechanisms directly in the native language of

the triple store. We only use the Prolog for its backtracking and

unification, and for having a unified way to pass around bound

and unbound variables. Here is an example:

(register-namespace "event”
"http://www.acme321.com/ontology/0.1")

(select (?x ?y)

 (?x event:knows ?z)

 (?z event:loves ?y))

3.1 RDFS and OWL Reasoning
Our query framework uses the standard RDFS and OWL-lite

reasoning. So in that sense there is not much to say about this

particular topic. Here is an example:

acme:project-meeting rdfs:subClassOf acme:meeting

acme:informal-meeting rdfs:subClassOf acme:meeting

acme:informal-project-meeting rdfs:subClass acme:informal-

meeting

acme:informal-project-meeting rdfs:subClass acme:project-

meeting

acme:meeting1000 rdf:type acme:informal-project-meeting

acme:meeting1001 rdf:type acme:project-meeting

(select (?x)

 (?x rdf:type acme:project-meeting))

=>

acme:meeting1000

acme:meeting1001

3.2 Temporal Logic
The kinds of temporal reasoning that you can do with events as

defined above in the event ontology are fairly standard. We

provide two types of temporal reasoning. The first type is

reasoning over events as if they were points in time, so you can

ask for events that started before or after another event started, or

we can ask if a number of events are in order. The second type is

about reasoning with intervals. You might want to find all of the

events where the entire event happened before another event, or

you might want to find all of the events that happened during

another event.

Table 1. Allen’s Interval Primitives

(interval-before ?e1 ?e2)

(interval-meets ?e1 ?e2)

(interval-overlaps ?e1 ?e2)

(interval-starts ?e1 ?e2)

(interval-during ?e1 ?e2)

(interval-finishes ?e1 ?e2)

(interval-after ?e1 ?e2)

(interval-met-by ?e1 ?e2)

(interval-overlapped-by ?e1 ?e2)

(interval-started-by ?e1 ?e2)

(interval-contains ?e1 ?e2)

(interval-finished-by ?e1 ?e2)

(interval-cotemporal ?e1 ?e2)

The temporal logic our framework supports is entirely based on

Allen's temporal logic [11] and was inspired by SNARK (SRI's

New Automated Reasoning KIT) [12]. Like SNARK, our

temporal representation supports two kinds of temporal entities,

time points and time intervals, and relationships between them.

Staying with the example we described above, say we want to find

an informal project meeting that happened before the official

project meeting during workday 200.

acme:workday200 event:start 2007-10-10T07:00:00

acme:workday200 event:end 2007-10-10T21:00:00

acme:meeting1000 event:start 2007-10-10T12:10:00

acme:meeting1000 event:end 2007-10-10T12:50:00

acme:meeting1001 event:start 2007-10-10T12:50:00

acme:meeting1001 event:end 2007-10-10T13:10:00

(select (?x ?y)

 (interval-during acme:workday200 ?x)

 (?x rdf:type acme:informal-meeting)

 (interval-during acme:workday200 ?y)

 (?y rdf:type acme:project-meeting)

 (interval-before ?x ?y))

As we mentioned before, we use Prolog as the carrier language for

the query framework and that provides us many advantages. As an

example, the following shows how to use the point-before

primitives in various ways.

Find everything before meeting1001.

(select (?x) (point-before ?x
acme:meeting1001))

Find everything after meeting1000.

(select (?x) (point-before
acme:meeting1000 ?x))

Find all before/after pairs, (don't ever do this in a large database).

(select (?x ?y) (point-before ?x ?y))

Is meeting1000 before meeting1001?

(select () (point-before
acme:meeting1000 acme:meeting1001))

3.3 Geospatial Reasoning on Events and

Shapes
In some cases you want to find the distance between two events,

or whether an event happened within a given distance of another

event. Or you defined a particular closed polygon and you want to

find out whether polygon1 is in polygon2, or whether polygon1

and polygon2 overlap. We support all these in the query language.

The following are a few example API calls:

This finds all the ?x within the bounding box specified by minlat,

maxlat, minlon and maxlon. If ?x is bound it will return true/false.

- (geo-bounding-box ?x minlat maxlat
minlon maxlon)

This will find all the events ?y that are in the bounding box

around ?x where the bounding box is specified by going 'miles'

miles left and right and up and down. If ?y is bound it will return

true/false.

- (geo-box-around ?x ?y miles)

Like the previous but now using the true radius.

- (geo-radius-around ?x ?y miles)

Find the distance between ?x and ?y and unify with ?dist.

- (geo-distance ?x ?y ?dist)

Find if polygon1 is in polygon2.

- (geo-polygon-contains p1 p2)

Now we add some longitudes and latitudes to the events, and ask

the same question we did before but we want to make sure the

distance between the two meetings is less than 9 miles.

[My home town Moraga, CA]

acme:meeting1000 event:latitude 37.83492660522461

acme:meeting1000 event:longitude -122.12968444824219

[Berkeley, CA]

acme:meeting1001 event:latitude 37.8715934753418

acme:meeting1001 event:longitude -122.27274322509766

(select (?x ?y)

 (interval-during acme:workday200 ?x)

 (?x rdf:type acme:informal-project-
meeting)

 (interval-during acme:workday200 ?y)

 (?y rdf:type acme:project-meeting)

 (interval-before ?x ?y)

 (geo-box-around ?x ?y 9))

Note: the triple store we use includes the well-known great-circle

distance to compute distances between points accurately, see

wikipedia for law of haversines [13].

3.4 Social Network Analysis
Social Network Analysis (SNA) is concerned with understanding

the structure of groups, the relationships and information flow in

and between groups, and the role of an individual actor in their

groups. SNA has been around since the 1930's. It picked up steam

in the 1950's when it started to bloom within Sociology and

Social Psychology. Since the 60's it is closely related with the

mathematical field of graph analysis. For readers new to this area,

the University of Essex offers a wonderful course on the basics of

SNA [14].

The importance of SNA for the Semantic Web was recently

brought into the open by Peter Mika’s book Social Networks and

the Semantic Web [15]. A quote from his book that summarizes

this:

“We are not just building the Web anymore: we are on it.

The latest set of applications have transformed the Web from

a mere document collection into a social space: the new

services developed under the banner of Web 2.0 cater to our

needs of connecting through the medium and allow us to

explicitly describe, maintain and develop our online self. At

the same time, documents and other forms of content are not

only up- and downloaded anymore, but actively exchanged,

filtered, organized and discussed in groups of all sizes …”

Social Network graphs are the most challenging graphs to work

with: they are mostly a mix of directed and undirected, mostly not

hierarchical, and are usually cyclic. As part of this unification

effort, we implemented a complete set of SNA algorithms that

help us answer some important questions with respect to groups.

Q1: What is the degree of separation from actor1 (A1) to actor2

(A2) and what is the connection strength from A1 to A2?

The degree of separation from A1 to A2 is computed by finding

the shortest path from A1 to A2 in the graph. Each actor might

have a number of attributes, some directly encoded in the triples,

some can be found by the RDFS/OWL reasoner and some can be

computed on the fly by applying rules or prolog functors. Before

we compute a shortest path we first have to define a generator that

determines for every childnode how it should expand into its

childnodes. The following says that if you want to go through the

graph from A1 to A2, only follow the links where this particular

node had a phone call or email with the next actor.

(defgenerator gen1
(undirected(telephone-call),
undirected(email)))

So now we find the degrees-of-separation between two people

through the following call where ?a1 and ?a2 need to be bound. If

?generator is bound it will use the generator to expand nodes,

otherwise it will follow all links.

(sna-shortest-path ?a1 ?a2 ?generator
?path)

The connection strength between two actors is computed by

counting all the paths between actors ?a1 and ?a2, where the

generator determines which paths are followed, and ‘depth’

determines the maximum length of a path.

(sna-connection-strength ?a1 ?a2
?generator ?depth ?result)

Q2: In what groups is actor A?

Find the group around a person to the Nth level. This is useful in

some cases to avoid catastrophic complexity.

(sna-ego-group ?a ?generator ?depth
?group)

It is more interesting to find all the fully connect graphs around a

person. Such a connected graph is also called a 'clique'. As an

example: I am in a family-clique that consists of my family

members and some friends of the family members that know all

the others in the family. In addition, I am part of a work-clique, a

tennis-clique, a Starbucks-clique, etc. In figure 2 we can see that

example person 3 is in three different cliques.

Figure 2. Cliques: {1,2,3}, {1,2,5}, and {3,4,5,6}

(sna-clique ?p1 ?generator ?minimum-
depth ?clique)

Q3: Who are the key players in a network?

There are several ways to compute the importance of an actor in a

particular group. The most obvious ones are 'in-degree' (how

many people point at me), 'out-degree' (how many people do I

point to) and nodal degree (add the previous two). A more

sophisticated method is to compute the centrality of an actor. The

three most important actor-centrality measures that we’ve

implemented are:

1. Actor degree centrality: I have the most connections in a

group so I am more important.

2. Actor closeness centrality: I have more shortest paths to

anyone else in the group so I am more important.

3. Actor betweenness centrality: I am more often on the

shortest path between other people in the group so I am

more important. I can control flow of information better

than other people.

Q4: How strong and well connected is this group or how

centralized is this group?

If you want to know how well connected a group is you can

compute its density. Density is defined as the ratio between actual

number of connections of all the actors in the group and the

theoretical possible number of connections in a group. More

complicated is to compute to what a group is centralized around.

We compute group-degree-centrality, group-betweenness-

centrality and group-closeness-centrality.

3.5 Putting It Together
So, we now have discussed how to use RDFS/OWL in this

framework, we showed how to use Geospatial and Temporal

reasoning; now we finally can do a query where we also add

Social Network Analysis to the mix.

If we go back to our previous example: do we have a shared friend

that was in a meeting today close to us that we were not in? There

are undoubtedly other ways to do this but here is one example:

(select (?x ?y ?a2)

 (interval-during acme:workday200 ?x)

 (?x rdf:type acme:meeting)

 (?y rdf:type acme:meeting)

 (?z rdf:type acme:meeting)

 (not (= ?x ?y ?z))

 (geo-box-around ?x ?y 0.5)

 (geo-box-around ?x ?z 0.5)

 (?x event:actor ?a)

 (sna-clique ?a gen1 3 ?ac)

 (?y event:actor ?b)

 (sna-clique ?b gen1 3 ?bc)

 (?z event:actor ?c)

 (not (= ?a ?b ?c))

 (member ?c ?ac)

 (member ?c ?bc))

3.6 SPARQL Research Questions
One question that we get repeatedly is whether we can make this

work in SPARQL. SPARQL very quickly became the query

language of choice so from that perspective it would be great if all

the technology discussed in this paper would actually work from

SPARQL.

The biggest challenges with the current SPARQL specification

are:

1. SPARQL only works on raw and inferenced triples. If

we look at the examples that have been described in this

paper above we see that we’ve added many query types

that are actually rules. One solution the SPARQL

community has come up with is to define so-called

'magical' predicates. The SPARQL engine recognizes

the special 'magical' predicates and instead of looking in

the triple database, it will invoke a rule or function with

the arguments supplied in the specific SPARQL clause.

2. SPARQL only supports 2-ary predicates. In the

examples we see 3 or 4-ary predicates. Take as an

example geo-box-around. It takes three arguments. One

solution would be to change SPARQL to take magic

predicates that take more than 2 arguments. Another

option would be to break up the 3-ary predicate in two

clauses with 2 arguments and then have the engine turn

it into a 3-ary magical predicate.

4. DISCUSSION

In this article we have shown how we can combine geospatial

reasoning, temporal logic, social network analytics, and RDFS

reasoning all in one query language. It is relatively unimportant

that this is prototyped in Prolog, as we will in the near future

rewrite this into something more amenable to query optimization.

One question that people ask who are familiar with triple stores is:

how can this work efficiently on very large data sets containing

hundreds of millions of triples? Most first generation triple stores

store the URIs and literals that constitute the parts of a triple as

strings in a dictionary. So then, when doing range queries over

numeric values, for example, "select * from person where age >

50”, the triple store engine has to go through each value for the

predicate age. One way around this is to add btrees for every

numeric type but that in general is a very inefficient solution in

triple stores. The triple store that we use is AllegroGraph [16]

which is actually a hybrid between a relational database and triple

store, the internal representation of the triples is such that it

allows for very efficient range queries.

So let us conclude with some notes on the efficiency of our query

framework.

4.1 Temporal Reasoning
Temporal reasoning obviously uses the range queries to the fullest

extent. If you want to find all the events that happened between

Jan. 1, 2008 and Jan. 2, 2008, the triple store does a straight triple

query with only one cursor scan. It is still possible to blow up the

query time spectacularly by doing things like

(select (?x ?y) (point-before ?x ?y))

as that will generate every before/after pair. However, we do

consider that to be the responsibility of the user. In many cases a

query optimizer can warn for that or rearrange the clauses to bind

?x or ?y.

4.2 Geospatial Primitives
In order to make this fast we implemented a variation of an R-

Tree [17] to encode two-dimensional data very efficiently directly

in the triple indices. A detailed description of how this geospatial

representation works can be found in the Geospatial Tutorial

included with the AllegroGraph documentation [18].

Using the GeoNames database [9], we can retrieve all 459 geo-

points around Berkeley less than 4 miles away in less than 5

milliseconds. We would argue that the basic retrieval speed is

comparable to or better than full-scale spatial databases.

4.3 Social Network Analysis
A native, general graph database is written specifically to make

graph search faster. However, the bottleneck is still getting triples

from disk as fast as possible and having the smartest algorithms

and best caching available. For example, many of the centrality

measures that are used to compute the importance of an actor in a

known group need to compute the shortest path between every

actor in the group. We have created special constructors to cache

these groups in a transparent way so that most computations can

be done in memory. We are satisfied with the current performance

but we are also happy there are still many places where we can

improve performance.

4.4 Query Optimization
The primary research effort for the current version of the query

framework is to make query-optimizing work. In a framework

where it is hard to predict how many new bindings a clause will

generate, query optimizing is hard. We still need to rely on smart

users to order clauses appropriately.

5. REFERENCES

[1] 1st Scientific American article on the Semantic Web,

http://www.sciam.com/article.cfm?articleID=00048144-

10D2-1C70-84A9809EC588EF21&ref=sciam

[2] REWERSE, http://rewerse.net

[3] Scharl, A., Tochtermann, K.: The Geospatial Web: How

Geobrowsers, Social Software and the Web 2.0 are Shaping

the Network Society. Springer (2007)

[4] W3C Geospatial Incubator Group,

http://www.w3.org/2005/Incubator/geo/

[5] Gutierrez, C., Hurtado, C., and Vaisman, A. Temporal RDF.

In European Conference on the Semantic Web (ECSW’05)

(Best paper award), pages 93–107, 2005,

http://www.dcc.uchile.cl/~cgutierr/papers/temporalRDF.pdf

[6] Cycorp, http://www.cyc.com/

[7] Raimond, Y. Abdallay, S., Event Ontology, 2007,

http://motools.sourceforge.net/event/event.html

[8] The Friend of a Friend Project, http://www.foaf-project.org/

[9] GeoNames Data Access, http://www.geonames.org/export/

[10] The international standard date and time format,

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

[11] Allen, J.F.: Time and Time Again: The Many Ways to

Represent Time. International Journal of Intelligent Systems,

Vol. 6, No. 4 (1991)

[12] SNARK, SRI’s New Automated Reasoning Kit,

http://www.ai.sri.com/~stickel/snark.html

[13] Wikipedia, the Haversine formula,

http://en.wikipedia.org/wiki/Haversine_formula

[14] University of Essex, Social Network Analysis course,

http://www.analytictech.com/essex/schedule.htm

[15] Mika, P.: Social Networks and the Semantic Web. Springer

(2007)

[16] Franz Inc.’s AllegroGraph 3.0,

http://agraph.franz.com/allegrograph/

[17] Wikipedia R-tree data structure,

http://en.wikipedia.org/wiki/Rtree

[18] Geospatial tutorial section of Franz Inc.’s AllegroGraph 3.0

documentation,

http://agraph.franz.com/support/documentation/3.0/geospatia

l-tutorial.html

