

Event Processing using an RDF Database
Jans Aasman

Franz, Inc.

555 12th Street, Suite 1450

Oakland, CA 94607

+1-510-452-2000

ja@franz.com

Abstract

This paper is about a new type of event database that

enables efficient reasoning about things, people, companies,

relationships between people and companies, and about places

and events. The event database is built on top of a scalable

distributed RDF triple store that can handle literally billions of

events. Like objects, events have at least one actor, but usually

more, a start-time and possibly an end-time, a place where the

event happened, and the type of the event. An event can have

many additional properties and annotations. On top of this event

database we implemented libraries for RDFS++ logic reasoning,

for geospatial and temporal capabilities, and an extensive social

network analysis package. This paper focuses on a query

framework that makes it easy to combine all of the

aforementioned capabilities in a user friendly query language.

I. INTRODUCTION

This paper describes the design and use of a unifying

query framework for geospatial reasoning, temporal logic,

social network analytics, RDFS and OWL in Event-based

systems [1]. In this introduction we will first go into why

we need such a framework and the requirements for such a

framework.

The reason for such a framework can be answered by

looking at the vision of the semantic web and

understanding how companies use semantic technologies.

Tim Berners-Lee, James Hendler and Ora Lassila’s

Scientific American article (May, 2000) [2] provides a

compelling vision of the Semantic Web. It contains some

interesting use cases for what the Semantic Web will

bring. These use cases assume that software agents know

how to roam the web and reason over things, people,

companies, relationships between people and companies

and about places and events. Clearly these agents need a

query capability that supports a combination of description

logic, geospatial reasoning, temporal reasoning, and

knowledge about the social relationships between people.

The commercial vendors of Semantic Technologies

also see a number of use cases that all center around events

and require the aforementioned query capabilities. We

currently see companies using large data warehouses with

very disparate RDF based triple stores describing various

types of events where each event has at least two actors,

usually a begin and end time, and very often a geospatial

component. These events are literally everywhere: in

Health Care applications we see hospital visits, drugstore

visits, and medical procedures. In the Communications

Industry we see telephone call detail records, including

location. An email and calendar database of a large

company is nothing more than a social network database

filled with events in time and, in many cases, space. In the

Financial Industry every transaction is essentially an event.

In the Insurance Industry claims are important events and

they desperately need more activity recognition. In the

Intelligence community basically everything revolves

around events and actors. The REWERSE program from

the 6th Framework Programme of the EU Commission [3]

is one of the few systematic efforts to combine RDFS/OWL

with geotemporal reasoning, although the social aspect

hasn't been addressed yet. The recent book “The

Geospatial Web” [4] currently provides the state of the art

overview on how to work with people and events on a web

scale and what kind of applications we might expect in the

near future.

II. FRAMEWORK REQUIREMENTS

The Semantic Web community has made great strides

in the area of ontologies and description logic, and some

initial work in the areas of geospatial reasoning [5],

temporal reasoning [6], social network analysis [7], and

event ontologies [8]. All of this is based on RDF as the

data representation. Based on this W3C standard the

combination of all these different reasoning capabilities in

one unified framework will propel further industry

adoption of Semantic Technology. Given that we have

seen a direct need for query capabilities that handle

geospatial/temporal/social/rdfs/owl, we have designed a

framework. The main requirements we identified were:

1. User and programmer friendly: We wanted the

framework to be an extension of SPARQL, with

SPARQL as the foundation. Certainly the

framework should not be anymore complex than

SPARQL. SPARQL is relatively user friendly, and

as languages go, the adoption rate is such that one

could make the argument that it is sufficient to

address most use cases.

2. Implementer friendly: We need many people to

experiment with this proposed framework such

that the Semantic Web community can converge

on a standard.

3. Efficient: Given that we work with very large

databases with millions of events where the

response time has to be on the sub second level, the

implementation of the query language and query

engine needs to be very fast

4. We want the query language to work on distributed

databases. Currently we’ve designed the query

engine to work on federations of triple stores. Once

we develop efficient caching techniques for

distributed RDF knowledge stores residing all over

the web, it will also be efficient for agents that

need to roam the web.

5. Practical & Easily Extendible: We want the API to

be such that it can be easily modified to allow for

ongoing experimentation.

6. Works well with RDFS and OWL reasoning.

III. DISCUSSION

In the remainder of the paper we show how we can

combine geospatial reasoning, temporal logic, social

network analytics, and RDFS reasoning all in one query

language.

One question that people ask who are familiar with

triple stores is: how can this work efficiently on very large

data sets containing billions of triples? Most first

generation triple stores store the URIs and literals that

constitute the parts of a triple as strings in a dictionary. So,

when doing range queries over numeric values, for

example, "select * from person where age > 50”, the triple

store engine has to go through each value for the predicate

‘age’. One way around this is to add btrees for every

numeric type but that in general is a very inefficient

solution in triple stores. The triple store that we use is

AllegroGraph which is actually a hybrid between a

relational database and triple store, the internal

representation of the triples is such that is allows for very

efficient range queries.

A. Temporal Reasoning

Our temporal reasoning is based on James Allen’s

Interval Logic [9]. This logic looks at all the 13 ways two

temporal intervals can relate to each other. We provide

predicates for each of Allen’s 13 interval predicates. Note

that we do purely quantitative temporal reasoning. So if

you provide a number of events with a start time and an

end time or a duration then we can perform queries like

the following. This example will return all intervals ?i2

that happened in interval ?i1.

(select ?x (interval-during ?i1 ?i2))

Temporal reasoning uses the range query capabilities to

the fullest extent. If you want to find all the events that

happened between Jan. 1, 2008 and Jan. 2, 2008, the triple

store performs a straight triple query with only one cursor

scan. It is still possible to blow up the query time

spectacularly by doing things like

 (select (?x ?y) (point-before ?x ?y))

as that will generate every before/after pair. However, we

do consider that to be the responsibility of the user. In

many cases a query optimizer can warn for that or

rearrange the clauses to bind ?x or ?y.

B. Geospatial Primitives

Our original intention of adding Geospatial capabilities

was not so much to compete with existing spatial databases

but instead make it very easy for RDF users to be able to

deal with locations of objects very efficiently. In order to

make this fast we implemented a variation of an R-Tree to

encode two-dimensional data very efficiently directly in

the triple indices [10]. A detailed description of how this

geospatial representation works can be found in the

geospatial tutorial included with the AllegroGraph

documentation [11]. Currently we support a number of

predicates that can be used in the query language. Some

examples of the predicates:

 (geo-distance ?x ?y ?dist) -> given, x and y, return distance

 (geo-within-radius ?x ?y 10.0) -> find y within 10 miles from x

 (geo-inside-polygon ?polygon ?place ?lon ?lat)

For our benchmarking we use the open source

GeoNames database that can be freely downloaded from

GeoNames.org [12]. The database contains nearly 7

million points of interest on earth. From interesting points

in nature, to populated areas, to schools and churches, etc.

Each point has 12 features such as asciiname, the local

name, elevation level, longitude, latitude, population, etc.

Actually, it is not a database but a csv file that

programmers can modify as necessary. For our purposes

we obviously transform it into RDF triples. We can

retrieve all 459 geo-points around Berkeley less than 4

miles away in less than 5 milliseconds. We would argue

that the basic retrieval speed is comparable to or better

than current commercial spatial databases. Here are some

typical example queries that you can do on the GeoNames

database:

Find the distance between Oakland and the one and only

Berkeley in California.

(select (?dist)

 (q ?x geo:name “Oakland”)

 (q ?y geo:name "Berkeley")

 (q ?y geo:admin1_code "CA")

 (geo-distance ?x ?y ?dist))

Put in a Google map all the places within 10 miles from

Oakland

(google-map (select (?name ?lat ?lon)

 (q ?x geo:asciiname “Oakland”)

 (geo-within-radius ?x ?y 10)

 (q ?y geo:asciiname ?name)

 (q ?y geo:isAt5 ?pos)

 (pos->lon/lat ?pos ?lon ?lat)))

C. Social Network Analysis (SNA)

Many RDF resources are about people and

relationships between people, or between people and

companies, or between companies and other companies.

We added Social Network Analysis methods to make it

easier to reason about relationships and groups. The

functions that we provide address the five basic questions

from Social Network Analysis. (1) How far is person A

from person B, (2) if there is a link between A and B then

how strong is this relationship, (3) given a particular actor

A, in what group does this actor ‘live’, (4) given an actor

in a group, how important is this actor in the group and

finally, (5) given a group, how dense are the relationships

in the group and does this group have a leader or a set of

leaders. The SNA library encompasses a set of well know

SNA algorithms. We provide a set of general functions and

have developed the concept of a generator. A generator is

basically a function that takes as an input one node and

then creates a set of output nodes. The search functions

and SNA functions that we provide take these generators

as first class arguments. For example: say we have a

database with relationships between people, the generator

‘knows’ will take as an input a person and return a set of

person(s) by following fr:went-to-dinner-with and fr:went-

to-movies in both directions.

(defgenerator knows ()

 (bidirectional fr:went-to-dinner fr:went-to-movies))

We can use this generator to find, for example, the

shortest path between two people. In this case the query

will return a list of persons.

(select ?x

 (shortest-path knows fr:Person1 fr:Person2 ?x))

Or we can use the generator to first create a group of

friends and friends of friends in the ego-group predicate,

and then we find the importance of each member using the

actor-centrality measure. This predicate will start with the

most important one first.

(select ?x

(ego-group fr:Person1 knows 2 ?group)

 (actor-centrality-members ?group knows ?x))

AllegroGraph is a native, general graph database,

written specifically to make graph search faster. However,

the bottleneck is still getting triples from disk as fast as

possible and having the smartest algorithms and best

caching available. For example, many of the centrality

measures that are used to compute the importance of an

actor in a known group need to compute the shortest path

between every actor in the group. We have created special

constructors to cache these groups in a transparent way so

that most computations can be done without minimal IO.

IV. AN OVERVIEW EXAMPLE

In order to give the reader an impression of the

breadth and depth of the query language, we provide a

typical example that combines geospatial, temporal, SNA

and RDFS reasoning.

(select (?x)

 (ego-group person:jans knows ?group 2)

 (actor-centrality-members ?group knows ?x ?num)

 (q ?event fr:actor ?x)

 (qs ?event!rdf:type fr:Meeting)

 (interval-during ?event “2008-12-01” “2008-12-05”)

 (geo-box-around geoname:Berkeley ?event 5 miles)

 !)

In English this translates into:

Find the group of friends and friends of friends

around the person “Jans”. Find within this group the

most important person first. Find if this person was

part of an event that was of type Meeting and

happened in a particular time interval within 5 miles

of Berkeley.

Note that we seamlessly mix Social Network Analysis in

the first two clauses, a simple database look up in the

third, an RDFS inference about the type of event, and then

a temporal and a geospatial constraint. This current

example and the examples shown above utilize Prolog. We

expect in early 2009 to have a SPARQL engine that will

perform this identical query.

The syntax of the SPARQL query will be slightly

more contrived due to the fact that SPARQL normally only

allows patterns that map directly on triples (see example

below). Note that we introduced the non-standard ‘=’ or

assignment construct. We are planning to discuss this

topic with the SPARQL committees.

select ?x where {

 ?group = ego-group(person:jans knows 2) .

 ?x = actor-centrality-members(?group knows ?x) .

 ?event fr:actor ?x ;

 rdf:type fr:Meeting .

 FILTER (interval-during ?event '2007-12-01' '2007-12-31')

 FILTER (geo-box-around geoname:Berkeley ?event 5miles)

}

V. SUMMARY AND FUTURE RESEARCH

In this paper we have discussed how RDF can serve as

a basis for an event database where events are defined as

‘things’ that (1) require RDFS++ reasoning because events

have types, (2) require geospatial reasoning because events

happen somewhere, (3) require temporal reasoning

because events nearly always have a start and duration and

(4) require some form of social analysis because most

interesting events have one or more actors.

We demonstrated how all of these capabilities can be

used in one query language, in this case Prolog. And we

expect that in the near future these capabilities will be

available in SPARQL as well.

The primary research effort for the current version of

the query framework is to enhance query-optimization.

Notice that in the example shown above, most clauses are

not direct matches against the database but functors that do

computations. Some of these functors can act both as

generators and as filters (as is common in Prolog). In case

a functor acts as generator we need to research better

statistical predictions for how many solutions can be

expected so that we can do better re-ordering of clauses.

VI. REFERENCES

[1] Aasman, J., Unification of geospatial reasoning,

temporal logic, & social network analysis in event-

based systems, Distributed Event Based Systems

(DEBS 2008)

http://portal.acm.org/citation.cfm?id=1386007

[2] 1st Scientific American article on the Semantic Web,

http://www.sciam.com/article.cfm?articleID=0004814

4-10D2-1C70-84A9809EC588EF21&ref=sciam

[3] REWERSE, http://rewerse.net

[4] Scharl, A., Tochtermann, K.: The Geospatial Web:

How Geobrowsers, Social Software and the Web 2.0

are Shaping the Network Society. Springer (2007)

[5] W3C Geospatial Incubator Group,

http://www.w3.org/2005/Incubator/geo/

[6] Gutierrez, C., Hurtado, C., and Vaisman, A. Temporal

RDF. In European Conference on the Semantic Web

(ECSW’05) (Best paper award), pages 93–107, 2005,

http://www.dcc.uchile.cl/~cgutierr/papers/temporalRD

F.pdf

[7] Mika, P.: Social Networks and the Semantic Web.

Springer (2007)

[8] Raimond, Y. Abdallay, S., Event Ontology, 2007,

http://motools.sourceforge.net/event/event.html

[9] Allen, J.F.: Time and Time Again: The Many Ways to

Represent Time. International Journal of Intelligent

Systems, Vol. 6, No. 4 (1991)

[10] Wikipedia R-tree data structure,

http://en.wikipedia.org/wiki/Rtree

[11] Geospatial tutorial section of Franz Inc.’s

AllegroGraph 3.0 documentation,

http://agraph.franz.com/support/documentation/curren

t/geospatial-tutorial.html

[12] GeoNames Data Access,

http://www.geonames.org/export/

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

