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Abstract

The Semantic Web has become an important movement in the internet during the
past years. A general issue in this context is reasoning on large ontologies. Traditional
reasoning strategies rely on efficient main memory data structures. As the growing
amount of assertional statements and data is more and more reaching the capacity
of standard user computers, there is a need for new reasoning strategies. Sebastian
Wandelt has shown in 2011 how to release this main memory burden from tableau
based reasoning systems. His idea was to create smaller subsets of the original data
for reduced instance checks. Therefore, he made use of several modularization strate-
gies that are able to split assertional data into logical parts for reasoning on small
main memory.

In this thesis we first of all want to extend the idea of Sebastian Wandelt to be
able to use even grounded conjunctive queries efficiently on small main memory
machines. For this purpose we use an architecture that is a combination of a new
improved client and an AllegroGraph triplestore.

In a second step, we want to show the possibility of converting any existing ontology
on an AllegroGraph store into small modules directly on the fly and without any
preparation and splitten files as in the approach of Wandelt.

We first recap the modularization strategy of Sebastian Wandelt and further describe
how we think conjunctive queries can be efficiently used on small ontology modules
by implementing islands directly on the AllegroGraph server. Finally we improve
our system with the use of specific new skeleton queries and show how we have
implemented the client system.

Afterwards, we evaluate the architecture by using the LUBM Benchmark ontology,
especially their own designed testqueries. Our conclusion is that we are able to use
all kinds of grounded conjunctive queries, but we are reaching performance issues
for some barely selective queries. Additionaly we can show that computing ABox
modularization for an existing ontology on the fly is possible, but requires a lot
of communication between our client and the AllegroGraph server, which reduces
the performance. Therefore, we present several improvement possibilities for the
future.
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1 Introduction

1 Introduction

1.1 The Semantic Web and Reasoning

The so called Semantic Web can be seen as a collaborative Movement started more
than ten years ago in a Scientific American article [Lee et al. 2001] by Tim Berners-
Lee, the inventor of the World Wide Web. In this work he defined the Semantic
Web as “a web of data that can be processed directly and indirectly by machines.”
During the past years the Semantic Web movement led by the World Wide Web
Consortium1 (W3C) has proposed several standard data formats to improve the
processing of machines on webdata. Some examples for standardized and promoted
formats are: the Resource Description Framework (in Chapter 2.3.1), RDF Schema
(in Chapter 2.3.2), the Web Ontology Language (in Chapter 2.3.3) and SPARQL
(in Chapter 2.4).

The interest in Semantic Web application has increased, e.g. digital libraries [Kruk
and McDaniel 2009][Goncalves et al. 2008], community management [Brickley and
Miller 2000][Maicher and Park 2006] and health care systems [Doms and Schroeder
2005][Cornet and De Keizer 2008]. According to the increased number of applications
the size of its data grows extremely fast. Since the Semantic Web is expected to
grow even further in the next years, applications require an additional amount of
flexibility, scalability and performance to overcome future challenges. Such systems
make intelligent use of promoted data format standards like OWL.

Today exist several solutions for query answering on Semantic Web Data in different
Description Logics. To receive knowledge from standardized data so called reasoners
are used. Examples for such machines are Racer [Haarslev et al. 2004] and Pellet
[Sirin et al. 2007]. However, those systems show bad performance in context with
large ontologies, as the implementation of the tableau based algorithms relies on
efficient and high performance main memory. If the ontology representation does not
fit into a relatively small main memory, the system will fail because of memory error
or expensive operating system activities. Implementations, that make successful and
efficient use of external memory have yet to be shown.

1www.w3.org

Christian Neuenstadt 1



1 Introduction

1.2 Goal of the Thesis

As a result of the increasing number of Semantic Web applications a new kind of
external memory-based retrieval systems has been developed during the past. These
“triple stores”, originally designed to store RDFS information, are currently getting
more and more in the focus, for instance OWLIM [Kiryakov et al. 2005] or Franz
AllegroGraph [Allegrograph. 2011], which we will use in this thesis. Triplestores show
impressive performance results, if it comes to retrieval systems on external memory.
But there are two weaknesses in this context.

First, the exact kind of reasoning used is not clear from outside. It could be anything
from simple lookup to complex description logic reasoning. And second, the bar that
inventors have set for hardware usage is pretty high. Using four parallel computers
with 48 GB of main memory each looks actually contradictory to the idea of triple
stores, which is based on using external memory.

Several strategies to overcome the problem of small main memory usage try to ap-
proximate or summarize the given input to the main memory, which usually comes
along with a reduction of expressivity or information [Cruz 2007][Dolby et al. 2007].
Other existing approaches make use of modularization techniques and try to ex-
tract independent modules out of the whole external data with respect to a specific
reasoning problem. Most of these modularization techniques concentrate on TBox
modularization as for instance shown in [Grau et al. 2006]. A first demonstration of
ABox modularization was finally shown in [Guo et al. 2005].

However, our review shows that many current implemented reasoning technologies
make use of main memory techniques. Therefore, these systems often have difficulties
when it is needed to handle large ABox data which can not fit into main memory.
Proposed solutions often use less expressive description logics.

This Thesis is based on an approach by Sebastian Wandelt in 2011 [Wandelt 2011].
In his work he proposed a way of using ABox modularizations to optimize query
answering with tableau-based reasoning systems. Therefore, he focused on a class of
description logics which we call semi-expressive. This description logic is also known
as SHI (no nominals and no choose rule). He also showed the possibility for instance
checks and instance retrieval on large ontologies efficiently and provided updatable
index data structures for reasoning.

The main goal of the research presented in this thesis is not only to further extend
the approach of Wandelt to make efficient use on grounded conjunctive queries with
external storage on a triple store database. We want to show a fast and efficient
method for grounded conjunctive queries, which is a lot better then the normal
naive approach and makes use of specific skeleton queries and SPARQL language.
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1 Introduction

As Sebastian Wandelt used preconfigured files with an ontology that is on the one
hand not implemented on amy server and on the other hand already split in parts be-
fore the actual modularization step, our second goal is to show a way to create ABox
modularization by using an already existing ontology directly on the AllegroGraph
store and convert this one on the fly into small modules.

1.3 Outline

In the following Chapter 2, an overview over basics needed to understand the work in
this thesis is given. The focus lies on existing Semantic Web Standards like RDF and
OWL. In the second part, important preliminaries and formal notions are defined
for instance the handling of graphs and description logics. Furthermore, we have a
look at ontologies and reasoning procedures.

Chapter 3 explaines the work of breaking down large ontologies to small parts from
Sebastian Wandelt. His idea was it to rewrite new assertional parts into smaller
chunks or modules. To solve decision problems on these smaller chunks only. His
modularization techniques are further extended to break up existing assertions by
so called intensional-based partitioning, which he showed first in ALC and further
lifted up to SHI.

Chapter 4 shows first, based on the work from Wandelt explained in Chapter 3, how
to make efficient use of ABox modularizations for instance checking and retrieval. It
proposes the strategie of individual islands. These islands are based on individuals
containing assertional axioms which are necessary for specific instance checking.
Furthermore, similarity measures are introduced for optimizing instance retrieval
over islands. In the last part of this chapter we have a look on the use of conjunctive
queries and their optimal usage on islands and triple stores.

Later we propose a prototypical implementation in Chapter 6.2, which uses the
explained algorithms in Chapter 3 and 4 to show our improvements on conjunctive
queries in practice. This will be evaluated over test ontologies and given test queries
to proof the scalability on large ontologies.

In Chapter 7 we conclude our work and summarize the main issues to indicate
interesting topics in the future.
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2 Preliminaries

2 Preliminaries

This chapter will introduce basic knowledge on Ontologies and Semantic Web stan-
dards. First, we define required mathematical knowledge and introduce the language
and axioms for the description of ontologies in Section 2.1 and 2.2. Furthermore, in
Section 2.2.3 we make use of these definitions to create an example ontology and
discuss languages and frameworks that are used to describe ontologies in general.
Finally, we explain ontology storage on external memory on AllegroGraph triple
stores in Chapter 2.4.

2.1 Basic Mathematical Notions

In this section basic mathematical notions will be defined. We will start with the
definition of sets.

Sets A set is a collection of well defined distinct objects. They are conventionally
denoted with capital letters. The sets A and B are equal if and only if they have
exactly the same elements. If every element of A is also element of B then A is
called the subset of B denoted with A ⊆ B. The powerset ℘(S) of set S is defined
as the set of all subset of S, including the empty set and S itself. The number of all
elements in a set S is called the cardinality and denoted with |S|.

Relations Given a collection of sets X1, ...,Xn the n-ary relation R over X1, ...,Xn

is a subset ofX1×...×Xn. The type of a relationR is donated withR : X1×...×Xn.
A binary relation R is given by the relation over two sets X and Y. This can also
be donated with xRy. Several different kinds of binary relations are:

• left-total if ∀x ∈ X : ∃y ∈ Y such that R(x, y),

• surjective if ∀y ∈ Y : ∃x ∈ X such that R(x, y),

• injective if ∀x1, x2 ∈ X : ∀y ∈ Y : R(x1, y) ∧R(x2, y) =⇒ x1 = x2,

• bijective if R is surjective and injective.
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2 Preliminaries

Department A 

Professor A 

Course A Course B 

Student A Student B 

headOf 

teaches 

takes takes 

Figure 2.1: Example of an directed graph with successors, predecessors and
neighbours

Given a binary relation R : X×X we define

• reflexive closure of R as R ∪ {(x, x) | x ∈ X}

• symmetric closure of R as R ∪ {(x1, x2) | (x2, x1) ∈ X}

• transitive closure of R as R(x1, x2) ∧R(x2, x3) =⇒ R(x1, x3)

Directed Graphs A tuple G = 〈N,E〉 is called directed Graph, where N is a
set of nodes and E is a set of edges. Given a node n ∈ N, an edge (n2, n) ∈ E
is called incoming edge denoted inG(n). An edge (n, n2) is called outgoing edge
denoted outG(n). The successor nodes of n, denoted as succesG(n) are nodes, that
are connected by an outgoing edge from n. The predecessor nodes of n, denoted as
predsG(n) are connected by an incoming edge to n. Where node neighbours, denoted
neighborsG(n), are connected with an outgoing or incoming edge.

Trees A tuple T = 〈N, root, children〉 is called a directed tree, such that N is a
set of nodes, root ∈ N is a distinguished root node, and children : N → ℘(N) is
a function which assigns each node to a number of child nodes, where every node
except the rootnode is reachable from the root and has exactly one predecessor.
Furthermore, a node n ∈ N is called leaf node if children(n) = ∅, otherwise it is
called inner node.
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2 Preliminaries

2.2 Description Logics

In this section we will shortly introduce description logics, a family of logic-based
knowledge representation languages that can be used to represent the terminological
knowledge of an application domain in a structured way. Description logics are
commonly used in topics of artificial intelligence for formal reasoning on concepts
of an application domain. Fundamental for Description Logics is the modeling of
concepts, roles and individuals as well as their relationships. The basic modeling
concept are axioms, which are simple logical statements to create relations between
roles and concepts.

2.2.1 Naming convention

Description Logics can be divided into many different varieties. Therefore there
exists a naming convention which roughly describes all allowed operators and their
expressivity.

A common variety is the description base language AL or attributive language,
which was first introduced in [Schmidt-Schauß and Smolka 1991].

AL Attributive language allows:

• Atomic negation

• Concept intersection

• Universal restrictions

• Limited existential quantification

Common extensions for description base languages are:

• F Functional properties,

• U Concept union,

• C Complex concept negation,

• H Role hierarchy (subproperties),

• R Limited complex role inclusion axioms, reflexivity and irreflexivity,

• O Nominals,

• I Inverse properties,

• N Cardinality restrictions,

• Q Qualified cardinality restrictions.
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2 Preliminaries

To create conventions for description logics any combination of the base language
with extensions are now possible. For instance ALC is obtained from AL by adding
the complement operator (¬). Compared to AL in ALC complex negation of whole
concept axioms is possible, where in AL only negation of simple atomic concepts
is allowed. S stands for an abbreviation for the description logic ALC with added
transitive roles. In this thesis we will describe concepts in ALC with role hierarchies,
inverse properties and transitive roles. Thus, the following concepts are described in
SHI a shorter form for ALCHI with transitive roles.

2.2.2 Modeling

Description languages use a given formal syntax. In the following we give a definition
on syntax and semantics of the constructors we describe. We will use ALC as an
example.

Concept Descriptions Let CN be a set of concept names and RN be a concept
of role names. The expression C is a concept description of ALC if and only if:

• C = >,

• C = ⊥,

• C = A, such that A ∈ CN,

• C = C1 t C2, such that C1 and C2 are concept descriptions (union),

• C = C1 u C2, such that C1 and C2 are concept descriptions (intersection),

• C = ¬C2 , such that C2 is a concept descriptions (negation)

• C = ∃R.C2, such that C2 is concept description and R is a role description
(existential restriction)

• C = ∀R.C2, such that C2 is concept description and R is a role description
(value restriction)

Example for concept description Given a set of concept names CN = {Graduat-
eStudent, UnderGraduateStudent, Course} and a set of role names RN = {teaches,
takes}, possible examples for concept descriptions are:

• Atomic concepts: GraduateStudent, Course,

• Non atomic concepts: GraduateStudent tUnderGraduateStudent, ∃takes.Course,

• Negated concept names: ¬GraduateStudent, ¬Course,

Christian Neuenstadt 7



2 Preliminaries

Interpretations An interpretation I = (∆I, ·I) consist of a set of ∆I and a function
·I that maps every concept to a subset of ∆I and every rolename to a subset of
∆I ×∆I such that for all concept names CN and all role names RN:

• (>)I = ∆I,

• (⊥)I = ∅,

• (C1 u C2)I = CI
1 ∩ CI

2,

• (C1 t C2)I = CI
1 ∪ CI

2,

• (¬C)I = ∆I \ CI,

• (∃R.C)I = {x ∈ ∆I|∃y.〈x, y〉 ∈ RI ∧ y ∈ CI},

• (∀R.C)I = {x ∈ ∆I|∀y.〈x, y〉 ∈ RI → y ∈ CI}.

Example for interpretations Given a set of concept names CN = {GraduateS-
tudent, UnderGraduateStudent, Course} and a set of role names RN = {teaches,
takes} possible examples for interpretation descriptions are:

• ∆I = {δa, δb, δc},

• CourseI = {δa},

• GraduateStudentI = {δb, δc},

• takesI = {(δb, δa), (δc, δa)},

Closure of Concepts For syntactical analysis we introduce the closure of a concept
description, which is used as notion of a concept description in negation normal form
in order to further ease syntactical analysis.

Christian Neuenstadt 8



2 Preliminaries

Given a concept description C, the concept closure of C, denoted clos(C), is defined
as follows:

clos(C)



{>} if C = >

{⊥} if C = ⊥

{A} if C = A

{{a}} if C = {a}

{C} ∪ clos(C1) ∪ clos(C2) if C = C1 t C2

{C} ∪ clos(C1) ∪ clos(C2) if C = C1 u C2

{C} ∪ clos(C1) if C = ¬C1

{C} ∪ clos(C1) if C = ∀R.C1

{C} ∪ clos(C1) if C = ∃R.C1

Negation Normal Form The negation normal form defines that all negations have
to occur in front of atomic concepts or concept names only. A concept description
in negated normal form is denoted as nnf (C), where C ∈ CN.

Every concept can be transformed into a concept description in negation normal
form. For details see [POUR 2012].

2.2.3 Knowledge Base

A tuple K = 〈T,A〉 is called knowledge base, where T is a TBox and A is an ABox.
The TBox stores a finite set of constraints stating general properties of concept and
roles of the form C v D and C = D , where C and D are concept expressions.
Compared to the TBox, the ABox comprises assertions on individual objects of the
form C(a) and individual role assertions R(a, b) where a, b are names of individuals.
A typical assertion in the ABox defines that an individual is an instance of a certain
concept.

The TBox can be seen as a kind of an Entity-Relationship Model in databases that
has a highly expressive semantic for description logics, defined in the terms of inter-
pretation. Another important issue of description logic is the possibility of reasoning
over T- and ABox which is associated with the knowledge base. Several reasoning
tasks can be carried out. The simplest form of reasoning involves computing the
subsumption relation between two concept expressions. Another way is to check
whether a certain assertion is logically implied by a knowledge base, which can be
a more complex reasoning task.

Christian Neuenstadt 9



2 Preliminaries

Example Ontology

In this section we will present an example of an ontology, consisting of T-, A- and
RBox. This ontology is related to the one used in the LUBM project of Lehigh
University [Guo et al. 2005]. Which we will use entirely during this thesis, especially
benchmarking and evaluating of the proposed prototype. Subsets of this example
will be used for further demonstrations in the following chapters. An example graph
is shown in Figure 2.2.

Example The example ontology OEx = 〈TEx,REx,AEx〉 is defined as follows:

TEx = {

Chair ≡ ∃headOf.Department,

Student ≡ ∃takes.Course,

Student v person, Professor v person,

UndergraduateCourse v Course,

GraduateCourse v Course,

GraduateCourse u UndergraduateCourse v ⊥,

> v ∀teaches.Course,> v ∀takes.Course,

∃memberOf.> v Person

}

REx = {

headOf v memberOf,∃headOf.Department,

teaches ≡ isTaughtBy−

}

Christian Neuenstadt 10



2 Preliminaries

cs 

ann 

c3 c1 

sue sam 

headOf 

teaches 

takes takes 

eve 

teaches 

memberOf 

c2 

teaches 

takes 

Figure 2.2: Graph of the example ontology

AEx = {

Department(cs)

Professor(ann), P rofessor(eve)

UndergraduateCourse(c1), UndergraduateCourse(c2),

GraduateCourse(c3),

Student(sam), Student(sue)

headOf(ann, cs)

memberOf(eve, cs)

teaches(ann, c1), teaches(ann, c3), teaches(eve, c3),

takes(sam, c1), takes(sam, c2), takes(sue, c3)

}

2.2.4 Inferences

The basic idea of knowledge representation systems based on Description Logics
is to perform specific kinds of reasoning. Their purpose goes beyond storing con-
cept definitions and assertions. A knowledge base including TBox and ABox uses
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2 Preliminaries

semantics that makes it equivalent to a set of axioms in first-order predicate logic.
Thus, like any other set of axioms, it contains implicit knowledge that can be made
explicit through inferences. Considering the university example it is clearly visible
that the Professor who teaches sues course is named ann. Although it is not directly
written down. Gaining these new informations in a machine based process is called
reasoning. Reasoners are able to reason in several ways on ABox and TBox. In the
following section, we have a look at these inferences for TBoxes and ABoxes.

For TBox reasoning there are five different reasoning tasks used:

Knowledge Base Consistency: A TBox T is consistent if its negation is not a
tautology. I.e., T is inconsistent if there is no interpretation which entails T.

Satisfiability: A concept C is satisfiable with respect to T if there exist a inter-
pretation I of T such that CI is true.

Subsumption: A concept C is subsumed by a concept D with respect to T if
CI ⊆ DI for every model I of T.

Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI

for every model I of T.

Disjointness: Two concepts C and D are disjoint with respect to T if CI ∩DI = ∅
for every model I of T.

Usually, the basic reasoning mechanism checks only the satisfiability of concepts.
This is actually sufficient to implement as the other inferences can be converted into
satisfiability due to the following reductions. If a system also allows negationform
one can reduce the problem to the satisfiability problem. For a concept C and a
concept D we define:

• C is unsatisfiable → C v ⊥ → C u ¬D is unsatisfiable

• C and D are equivalent → C v D ∧ D v C → (C u ¬D) and (¬C u D) are
unsatisfiable

• C and D are disjoint → C uD v ⊥ → C uD is unsatisfiable.

For reasoning on ABoxes one has to consider that there are only concept membership
assertions of the form C(a) and role membership assertions of the form R(a,b).
Therefore, the ABox can only be seen as a knowledge base attached with its TBox
and ABox reasoning can also only be done with respect to its TBox. The basic
reasoning services used on ABox are:

Christian Neuenstadt 12



2 Preliminaries

Instance Check: Determines whether an assertion is entailed by ABox A (A |=
C(a)). An assertion is entailed if every interpretation that satisfies A also
satisfies C(a).

Instance Retrieval: Given an ABox A and a concept C, find all individuals a such
that {a | A |= C(a), a ∈ A}.

Instance Realization: Given an individual a and a set of concepts, find the most
specific concepts C such that {a | A |= C(a), a ∈ A}.

ABox Consistency: An ABoxis consistent if it is consistent with respect to the
TBox.

2.2.5 Conjunctive Queries

We have already briefly talked about rather weak forms of querying like instance
retrieval and instance checks in the last section. With conjunctive queries (CQs) we
add another well known topic in the database community.

Definition A conjunctive query or CQ can be represented as q(~x) ← conj(~x, ~y),
where q(~x) is a query of the conjunctive set conj(~x, ~y). The two vectors ~x and ~y are
vectors of variables. ~x is the vector of so called distinguished variables that are bound
to individuals (single objects) of the knowledge base used to answer the query; ~y is the
vector of non-distinguished variables (existentially quantified variables). conj(~x, ~y)
itself is a conjunction of terms of the form v1 : C, 〈v2, v3〉 : R where C is a concept
name, R is a role name and v1, v2, v3 are variables from ~x or ~y (see [Dongilli 2008]).

Example For a CQ example, consider a knowledge base containing an ABox asser-
tion (∃hasDaughter.(∃hasSon.>))(Sue), this assertion informally states that the
individual Sue has a daughter who has a son, which says nothing else than Sue
is a grandmother. And hence, we additionally assume that both roles hasSon and
hasDaughter have a transitive super-role named hasDescendant, which implies a di-
rect relationship between her and her grandchild via that role. Alltogether, Sue is
obviously an answer to the conjunctive query hasDaughter(x, y) ∩ hasSon(y, z) ∩
hasDescendant(x, z), as far as we assume x as a free variable and y,z as quanti-
fied. We call free variables like x distinguished variables and quantified variables
non-distinguished. If all variables are non-distinguished, all variables are set and the
query answer can only be true or false. We call this a boolean query (see: [Abiteboul
et al. 1995]).
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In this thesis, we present a tableau-based reasoning solution on triplestores for an-
swering grounded conjunctive queries over large semi-expressive ABoxes. Grounded
conjunctive queries use distinguished atomic variables only, are more realistic in
practice and can be answered efficiently for expressive Description Logics.

Certain Answers The notion of answers to a query we used in this section is not
sufficient to capture the situation where a query is posed over an ontology, since
in general an ontology will have many models, and we are not able to single out
a unique interpretation (or database) over which to answer the query. Instead, the
ontology determines a set of interpretations (see 2.2.2), i.e., the set of its models,
which intuitively can be considered as the set of databases that are “compatible”
with the information specified in the ontology. Given a query, we are interested in
those answers to this query that depend only on the information in the ontology,
i.e., that are obtained by evaluating the query over a database compatible with the
ontology, but independently of which is the actually chosen database. In other words,
we are interested in those answers to the query that are obtained for all possible
databases (including infinite ones) that are models of the ontology. This corresponds
to the fact that the ontology conveys only incomplete information about the domain
of interest, and we want to guarantee that the answers to a query that we obtain are
certain, independently of how we complete this incomplete information. This leads
us to the following definition of certain answers to a query over an ontology (see
[Calvanese et al. 2009]).

Definition Given an Ontology O and a conjunctive query q over O. A tuple c of
constants appearing in O is a certain answer to q over O, written c ∈ cert(q,O), if
for every model I of O, we have that cI ∈ qI .

Answering a query q posed to an ontology O means exactly to compute the set of
certain answers to q over O.

Example We consider again the previous Example 2.2.5 from the last section and
find:

cert(q,O) = {(SueI)}.
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2.3 Semantic Web Data Formats

In this section we will introduce several Semantic Web standardizations which are
promoted by the W3C [Consortium 2012] to make the web more readable by ma-
chines. The described standards are used further in this work and specifically for the
prototype implementations. We describe briefly the resource description framework
(see 2.3.1), the web ontology language (see 2.3.3) and SPARQL queries (see 2.4).

There currently is a lot of knowledge on the web, but its readability by machines is
limited. Consider a webpage on Wikipedia, which offers a lot of information to the
human reader. But for the computer information is opaque and stays like a simple
presentation for human users.

What is meant by “semantic” is not that computers are going to understand the
meaning of anything. But you can imagine it as a web of many databases. So appli-
cation are to combine informations from several places. Consider a Website with a
database about a single productline, another with product reviews and a third with
retailer stocks and prizes. This becomes now easy to be meshed up together in a
single application, if all informations are “semantic”.

To guarantee machine readability the following standards are used.

2.3.1 The Resource Description Framework (RDF)

The Resource Description Framework as a family of the W3C specifications was
originally designed as a metadata data model. Nowadays it has become to a gen-
eral method for conceptual description of information that is implemented in web
resources by a variety of syntax formats. The RDF data model itself is based on
classic modeling approaches like class diagrams or entity-relationship models.

Triples of knowledge With RDF a general and flexible methode to decompose
knowledge into small pieces is provided. Those pieces are also called triples. The
foundation is represented in basically what we call a labeled, directed graph for a
known terminology. Each edge in the graph is represented in RDF by one statement.
If we consider our example from figure 2.2 for instance, one statement of this graph is
“Sue takes c3” and another “eve teaches c2”. Though, Semantic Web information is
typically represented as a set of statements consisting of three elements called triples.
Every statement can be divided into three parts Subject, Predicate and Object. All
triples together make a an ontology graph, where subjects and objects are nodes
and predicates are edges. Having this graph of statements, a data model is already
given and a machine could now easily answer questions like “who teaches c2?” or
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“which courses are taught in department cs?”. But a computer does not really need
to know what “teaches” actually means, so it is left to the application writer to use
the right predicates.

Usage of URIs As RDF is meant to be published on the web every used identifier
has to be absolutely unique. Otherwise computers could identify for example many
different eves as teacher of course c2. Therefore, we have to use global names, so
called Uniform Resource Identifiers (URI). URIs can have the same syntax or format
as website addresses, as those can be quite long we usually stick to the concept of
namespaces as an abbreviation.

One example for using RDF as an external database are triple stores like Allegro-
Graph which is further explained in 2.4.

2.3.2 RDF Schema

The presented Resource Description Framework (RDF) provides a way of modeling
information, but does still not present a meaning of these information. For example
it identifies eve as the one who is teacher of course c2. But there is absolutely no
information who or what eve actually is.

RDF Schema now provides an extension to RDF and introduces the notion of classes.
A class can simply be seen as the type of a thing. For instance in the case of eve, eve
is a Professor. Sam is a Student and c2 is of class Course. Classes allow expressive
semantics for query answering with respect to ontologies. To add class information
an application writer would just add another triple to the RDF files. In the case
of eve this is simply:“lubm:eve rdf:type lubm:Professor”. Where lubm and rdf are
namespaces.

RDFS vocabularies also describes the classes of resources and properties in a model
allowing to arrange classes and properties in generalization hierarchies and define
domain as well as range expactations for properties. In RDFS one named class can
be a subClass of a more generalized class. However, all classes are instances of the
class rdfs:Class and all properties are instances of rdf:Property. All Properties have
defined domains and ranges, which says that every resource, called domain, that has
the given property, must be of that specific type. And every Range, which is the
value of the property, must be instances of the property class. Though, in the given
example the domain of the property teacherOf can be stated as class Professor and
the range as class Course.
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2.3.3 Web Ontology Language (OWL)

The Web Ontology Language is another web standard promoted by the W3C and
written in XML. With the presented standard of RDFS it is now possible to define
class hierarchies as well as domain and range restrictions for properties. But addi-
tional resources are needed for more complex ontologies. Therefore, a new standard
for a richer language was proposed, the Web Ontology Language (OWL). OWL ex-
tends the RDFS vocabulary with additional resources that can be used to build more
expressive ontologies for the web and adds several new possibilities to the Semantic
Web standard. Some of the including features are:

Cardinality: restricts the number of elements to a minimum or maximum value.
Can be used to set the minimum of students who take a course to one.

Equality: makes use of equivalent classes. The class of professors who are head of
department is equal to the class chair.

Relationships between classes: explains the relation between different classes.
The union of UndergraduateStudents and GraduateStudents is used to be the
class Student.

Characteristics of properties: defines properties as transitive, symmetric, func-
tional or inverse property.

The combination of a language with an expressivity as powerful as a combination of
RDF Schema with full logic and efficient reasoning support seems to be incompatible
and have lead to define three different sublanguages. Each of these fullfilling differ-
ent aspects of the incompatible requirements. Those sublanguages are OWL FULL,
OWL DL and OWL Lite. For more information on OWL and the three sublanguages
we refer to [McGuinness et al. 2004].

In the recent update of OWL 2 theW3C introduced three different profiles: OWL EL,
OWL RL, and OWL QL. They are lightweight sublanguages of OWL, which restrict
the modelling features to simplify the reasoning procedure and has an large impact
on performance and scalability in respect to OWL 2 (see [Motik et al. 2009]).

2.4 AllegroGraph

In the following section we will briefly explain the external database structures used
in this thesis.

AllegroGraph is a closed source external graph database or triplestore. A triple-
store is a purpose-built database for storage and retrieval of triples, where one is
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composed of subject, predicate and object. Related to relational databases, one can
store information and retrieves it via query language. Triples together form a net-
work or graph. In the case of AllegroGraph, triples are saved with special indexes
as quadrupels or even as quintuples with context information.

As developed to meet the W3C standards for the Resource Description Framework
(see 2.3.1) AllegroGraph is properly considered as a RDF Database. The commonly
used query language is SPARQL. To test performance issues on AllegroGraphs ABox
querying, usually the Lehigh University Benchmark Database (see [Guo et al. 2005])
is used. For more information specific on AllegroGraph, we refer to [Allegrograph.
2011].

SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language for DL
databases, able to retrieve and manipulate data stored in RDF format. In SPARQL
queries consist of triple patterns, conjunctions, disjunctions and optional patterns.

It specifies four different query variations for different purposes, that can be used
within AllegroGraph:

SELECT query: Used to extract raw values from the triple store. The results are
returned in table format.

CONSTRUCT query: Is able to extract information and transform it into valid
RDF.

ASK query: Provides a boolean query format for queries on AllegroGraph.

DESCRIBE query: Is used to extract RDF graphs from data bases.

Example To give an example we model the question “Which teachers of under-
graduate courses are also head of a department?” as a SELECT query:
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Listing 2.1: Query example
1 PREFIX lubm: <http://example.com/lubmOntology#>
2 SELECT ?prof ?department
3 WHERE {
4 ?prof lubm:teacherOf ?course;
5 rdf:type lubm:Professor;
6 lubm:headOf ?department .
7 ?course rdf:type lubm:UndergraduateCourse .
8 ?department rdf:type lubm:Department .
9 }

Variables are indicated by a “?” prefix. In this case the bindings for ?prof and
?department will be returned.

Different patterns can be connected here with dots to conjunctive queries. The
SPARQL query engine basically searches sets of triples that matches these five pat-
terns while binding the variables to the corresponding parts of each triple.

To make queries more concise, SPARQL allows the definition of prefixes and base
URIs in a fashion similar to Turtle. In this query, the prefix lubm stands for
http://example.com/lubmOntology, what is a placeholder for the Lehigh University
Benchmark.
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3 Modularization

As already mentioned, reasoning over large ontologies is difficult. The modulariza-
tion techniques shown in the work of Sebastian Wandelt [Wandelt 2011] can help
to overcome problems, where small main memory is not sufficient to store whole
description logic ontologies. Here we will focus on the basic concepts of his ABox
modularization, since it exceeds the size of the terminological part by orders of mag-
nitude. Based on these preliminaries, we will show later how conjunctive queries
can be used in context with ABox modularization on triple stores. We will start in
this chapter by offering techniques proposed by Wandelt to break down ABoxes in
smaller chunks for the description logic ALC (see 3.1) and then show his techniques
for an implementation in SHI (see 3.2). We finally conclude this Chapter in 3.3.

3.1 Basic modularization techniques

In general, first of all we can define an ABox Modularization as a set of ABoxes
A1, ..., An constructed in an ABox-Modularization process. We stick to this general
notion, as ABox modules are not necessarily subsets of the original ABox. According
to this, we can make a definition of ABox module entailment.

ABox Modularization Entailment Given a TBox T , a RBox R, a ABox A and an
ABox modularization M, we say that M entails a concept assertion C(a), denoted
〈T ,R,M〉 |= C(a), if ∃A1 ∈ M.〈T ,R,A〉 |= C(a). Further, we say that M entails
a role assertion R(a1, a2), denoted 〈T ,R,M〉 |= R(a1, a2), if ∃A1 ∈M.〈T ,R,A〉 |=
R(a1, a2) (see [Wandelt 2011]).

For a better understanding of ABox entailment, we will give an ontology with two
different ABox modularizations as an example.

Example 3.1 The Ontology OEx3.1 = 〈TEx3.1,AEx3.1〉 is defined as follows

TEx3.1 = {Chair ≡ ∃headOf.Department}
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AEx3.1 = { Department(ee), P rofessor(mae),

UndergraduateCourse(c1), headOf(mae, ee),

Student(sam), Student(sue),

teaches(mae, c1), takes(Sam, c1),

takes(sue, c1)}

Example 3.2 One possible ABox modularization for ontology OEx3.1 is MEx3.2 =
{AEx3.2a,AEx3.2a}, such that

AEx3.2a = { Department(ee),

headOf(mae, ee),

P rofessor(mae)}

AEx3.2b = { UndergraduateCourse(c1),

Student(sam), Student(sue),

teaches(mae, c1), takes(sam, c1), takes(sue, c1)}

We can directly see from Ontology OEx3.1 that mae is an instance of the concept
description chair, because of the headOf -Relationship between mae and ee. There-
fore, the ABox modularization from Example 3.2 also entails that mae is an instance
of chair, as all necessary axioms are kept in one ABox. Nevertheless, we could think
of other possible ABox modularization. A second possible modularization is given
in Example 3.1.

Example 3.3 Another possible ABox modularization for ontologyOEx3.1 isMEx3.3 =
{AEx3.3a,AEx3.3a}, such that

AEx3.3a = { Department(ee),

UndergraduateCourse(c1)}
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AEx3.3b = { Student(sam), Student(sue),

teaches(mae, c1), takes(sam, c1), takes(sue, c1)

Professor(mae), headOf(mae, ee)}

The result of the modularization in Example 3.1 is different. It can be seen that
neither of the two ABoxes entails that mae is an instance of chair. Infact, they are
both chosen quite arbitrarily and so the necessary information was split up into both
boxes. Wandelt tries to keep all relevant information together in one ABox to avoid
communication overhead and retain completeness.

Both Examples show that the choice of modularizaton is critical for completeness of
instance retrieval. We will now briefly explain in the next part how Wandelt retains
soundness and completeness for ABox modularization. For a detailed discussion and
mathematical proofs see [Wandelt 2011].

In a component-based graphview of ABoxes, we can identify most individuals as
connected by role assertions to many other individuals. To receive smaller modules,
we have to split up as many of these role assertions as possible. After all of these
splits are done in the modularization process, we have to make sure that the ontology
retains soundness and completeness.

The idea to decide whether to split or not to split a role assertion is to analyze the
terminological part of the ontology. We give an example of a split decision to show
where information is propagated.

The Ontology OEx3.4 = 〈TEx3.4,AEx3.4〉 is defined as follows

TEx3.1 = { > v ∀takes.Course}

AEx3.1 = { Course(c1), Student(sue),

teaches(mae, c1), takes(sue, c1)}

As we look into the ABox, we can see certain issues relating to the two role assertions
teaches and takes in AEx3.4:

• teaches(mae, c5): The role teaches is not used or mentioned anywhere in the
TBox of ontology OEx3.9 . Thus, information can be propagated from mae to
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c5 and vice versa by tableau algorithm (see [Wandelt 2011]), and it might be
safe to split the role assertion to obtain smaller modules.

• takes(sue, c5): Although takes is mentioned in TEx3.4 , it is only used to
propagate the concept description Course. Since c1 is an instance of Course
and that fact is directly in AEx3.4, we might further split up this role assertion
in some cases.

To decide, if a certain role assertion is splittable, we need necessary decision criteria
to identify propagated concepts via role assertion. Since we make an assumption
that only allows atomic concept descriptions, we can focus on a syntactical analysis
of the TBox to obtain splittability information. To get over this, Sebastian Wandelt
proposed a solution of the so called ∀-info structure, which he evolved from the TBox
normal form. We will shortly define this structure and then show an example.

Definition A TBox T is in normal form if all concept inclusions have one of the
following forms:

A1 @ B, A1 uA2 @ B, A1 u ∃r.A2, or ∃r.A1 @ B

where A1, A2 and B are concept names appearing in T or the top-concept >.

Definition The ∀−infostructure for a TBox T in normal form is a function info∀T
: Rol → ℘(Con), such that we have C ∈ info∀T (R) if and only if ∀R.C ∈ clos(T )
(see 2.2.2 for closure of concepts).

An example for TBox with normal form and ∀ − infostructure is:

Example 3.5 Let

TEx3.5 = { > v ∀takes.Course,

∃takes.Course v Student,

∃memberOf.> v Person,

GraduateStudent v Student}.

Then the TBox TEx3.5 in normal form is
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ABox1 

ABox2 

mae 

c1 

teaches 

ABox1 

ABox2 

mae 

c1 

teaches 

mae* 

C1* teaches 

Abox-Split 

Figure 3.1: Intuition of an ABox split

Tnorm = { > v ∀takes.Course,

> v ∀takes.¬Course t Student,

> v ∀memberOf.⊥ t Person,

> v ¬GraduateStudent t Student},

The ∀-info structure for Tnorm is:

info∀Tnorm
(R)


{Course,¬Course} if R = takes,

{⊥} if R = memberOf,

∅ otherwise

The ∀-info structure shows which concepts descriptions are propagated over role as-
sertions. Given the above ∀ − infostructure, we follow up with an operation which
allows us to split role assertions in a manner that we can apply graph component-
based modularization techniques. This operation must retain soundness and com-
pleteness.
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The idea is shown in figure 3.1. Both Clouds indicate a set of ABox assertions.
We split a role assertion and keep the concept assertions for mae as a fresh and
individual copy in ABox1 and ABox2.

Sebastian Wandelt presented three decision criteria to check for a possible role as-
sertion splittability in the description logic ALC that have to be checked before a
split can be made. He also prooved soundness and completeness of his criteria. For
more information check [Wandelt 2011]. Those three criterias are:

Decision Criteria for ABox Splits in ALC-ontologies Given an ALC-ontology O =
〈T ,R,A〉, an ABox split is valid for O if for each C ∈ info∀T (R)

• C = ⊥ or

• there exists a concept description C2, such that C2(b) ∈ A and T |= C2 v C

or

• there exists a concept description C2, such that C2(b) ∈ A and T |= C uC2 v
⊥.

3.2 Modularization in SHI

Being able to use ABox modularization in SHI requires an extended algorithm.
Structures for role hierarchies, inverse roles and transitiv roles have to be imple-
mented. First, we start with ALCH and show how to add role hierarchies to ALC.

According to Wandelt, we will introduce therefore an extended version of the ∀-info
structure, that is able to handle role subsumptions, because propagations of concept
descriptions can now occur over all super roles.

Extendend ∀-info structure Given a TBox T in normal form and a RBox R, an
extended ∀-info structure for T and R is a function extinfo∀T R : Rol → Con, such
that we have C ∈ extinfo∀T R(R) if and only if there exists a role R2 ∈ Rol, such
that O |= R v R2 and ∀R2.C ∈ clos(T ).

Having the new extended ∀-info structure we can now also check which concept
descriptions are additionally propagated via super roles. That extends also our defi-
nition of the splittability criteria (see Definition 3.1), which has to be used in ALCH
with the extended structure.

As we try to lift up from ALCH to ALCHI, we have to consider inverse roles. That
means, now concept descriptions are not propagated in a single direction. They
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also can be propagated in the inverse direction. Thus, each decision criterion for
splittability must be satisfied for each role assertion neighbour.

Role Assertion Neighbor in ALCHI Given an ALCHI-ontology O = 〈T ,R,A〉,
two individuals a1 ∈ Ind(A) and a2 ∈ Ind(A), and a role description R ∈ Rol, a2 is
an R-neighbor of a1 if and only if

• there exists a role description R2, such that O |= R2 v R, andR2(a1, a2) ∈ A
or

• there exists a role description R2, such that O |= R2 v R−, andR2(a2, a1) ∈ A.

Therefore, the just extended decision criteria for splittabiliy in ALCH have to be
checked twice in ALCHI once for role assertions in normal direction and once for
the inverse direction (R−).

To get one final step further from ALCHI to SHI, we have to consider transitive
roles. As transitive roles and especially transitive super roles can be propagated, we
also have to remind this issue in the splittability criteria. For precise information
on proofs and the tableau rule application in this context we refer once again to
[Wandelt 2011].

To sum this part up, for extending the splittability criteria from ALC (see 3.1) to
SHI we have proposed three additional steps. First, the extended ∀-info structure
for hierarchical roles (see 3.2). Second, the check in both directions for inverse roles.
And third, a check for transitive roles.

The final decision criteria for the SHI-splittability is defined as follows:

SHI-splittability of Role Assertions Given a SHI-ontology O = 〈T ,R,A〉 and a
role assertion R(a,b), we say that R(a,b) is SHI-splittable with respect to O if

1. there exists no transitive role R2 with respect to O, such that O |= R v R2

2. for each C in extinfo∀T R(R)

• C = ⊥ or

• there exists a concept description C2, such that C2(b) ∈ A and T |= C2 v
C or

• there exists a concept description C2, such that C2(b) ∈ A and T |=
C u C2 v ⊥.

3. for each C in extinfo∀T R(R−)
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• C = ⊥ or

• there exists a concept description C2, such that C2(a) ∈ A and T |= C2 v
C or

• there exists a concept description C2, such that C2(a) ∈ A and T |=
C u C2 v ⊥.

3.3 Concluding Modularization Steps

In this chapter we have shown how ABoxes can be split to create unique and small
modules. First, we described graph-component-based modularization. To improve
this, we examined the splittability criteria by Sebastian Wandelt to create ABox
splits and finally defined all necessary criteria to ensure soundness and completeness
of reasoning in SHI.

The modularization process using the SHI-splittability is demonstrated in a final
example.

For analyzing the concrete splittability criteria, we consider the example ontology
from 2.2.3. The resulting extended ∀-infostructure (see 3.2) reads as follows:

extinfo∀TEx,REx
(R)



{Course,¬Course} if R = takes,

{⊥} if R = memberOf,

{Course} if R = isTaughtBy−,

{Course} if R = teaches,

{¬Department,⊥} if R = teaches,

∅ otherwise

Given the structure, we can decide on the splittabity of each role assertion. For exam-
ple thememberOf role memberOf(eve, cs) is splittable as extinfo∀TEx,REx

(memberOf) =
⊥ and extinfo∀TEx,REx

(memberOf−) = ∅. But all role assertions of the kind subOr-
gOf are not SHI-splittable as they are transitive roles, and this is against the first
criterion of the SHI-splittability check (see 3.2).
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4 Using Modules

We have introduced techniques to modularize the assertional part of an Ontology in
the last chapter. Our goal is now to show how to use these modularized ABoxes for
efficient reasoning. We will basically present the ideas of Sebastian Wandelt, who
proposed his individual islands and a new structure called one-step nodes for this
purpose.

In Section 4.1 we will formally define a subset of ABox assertions, called individual
island. Which allows us to define an optimized strategy to perform instance checking
for individuals on each individual island seperately.

In Section 4.2 we discuss the similarity of islands to introduce a new data structure
called one step node. The criteria of similarity allows us to perform reasoning on one
step nodes instead of complete indiviual islands and answer querys fast.

Finally, Section 4.3 shows how we use one step nodes an islands for individual query
answering as well as instance checking and retrieving.

This chapter is concluded with Section 4.4.

4.1 Individual Islands

In this Section, we will show an optimized way to perform instance checking for a
given named individual proposed by Sebastian Wandelt in [Wandelt 2011].

Our goal is to formally identify a subset of assertions that we call individual island
and is sufficient to perform sound and complete instance checking for a given in-
dividual. In Chapter 3 we defined criteria that allow us to split up role assertions,
while retaining soundness and completeness of instance checking algorithms. Based
on these preliminaries, we can formally define an individual island candidate.

Individual Island Candidate Given an ontology O = 〈T ,R,A〉 and a named indi-
vidual a ∈ Ind(A), an individual island candidate, is a tuple ISLa = 〈T ,R,Aisl, a〉
such that Aisl ⊆ A.
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Individual Island Given an ontology O = 〈T ,R,A〉 and an individual island candi-
date ISLa = 〈T ,R,Aisl, a〉, ISLa is called individual island for O if ISLa is sound
and complete for reasoning in O.

Informally spoken, an individual island candidate becomes an individual island if it
can be used for sound and complete reasoning. Soundness is easy to see for an island
candidate, since it contains a subset of the original ABox. For more on soundness
and an explanation on completeness we refer to [Wandelt 2011].

We will now focus on the generation of individual islands. In Figure 4.1 we define an
algorithm for the computation of islands. The algorithm gets as input an ontology
O and a single individual a. At the end it returns the individual island of individual
a. The set agenda includes all individuals that have to be visited next, starting
with individual a. Where the set seen has all individuals that are already visited.
In the process we check any role assertion between a1 and a2 for the defined SHI-
splittability. If the role assertion is not splittable, we will add a2 to the agenda and
continue with the role assertions of a2 until the agenda is empty. Any individual we
pass will be added to the individual island.

With the computation of islands we are already able to reduce the required size
in the main memory as we can use our islands instead of the whole ABox. But in
order to find instances for individuals it might be useful to combine individuals in
groups and start retrieval over one entire group. From the computation of islands it
is clear that two different individuals might belong to the same island or ABox, if
both are connected by a chain of SHI-unsplittable role assertions. However, finding
individuals belonging to a similar island is not a trivial task.

Therefore, Wandelt proposed a similarity measure for graphs that are “structually
equivalent” and not identical, but entail the same set of atomic concept descriptions
for the root node. His similarity measure is based on the definition of homomorphism
over labeled graphs. He defines the three homorphism criteria for individual island
graphs as follows:

Individual Island Graph Homomorphism Given an individual island graph, a ho-
momorphism is mapped to this graph and called individual island graph exactly
if:

• The concept of the root is equal to the mapped root.

• The set of all concept descriptions is equal for all nodes and their mapped
nodes

• All nodes have exactly the same concepts of successors nodes as their mapped
nodes.
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Input: Ontology O = 〈T ,R,A〉, individual a ∈ Ind(A)
Output: Individual Island ISLa = 〈T ,R,Aisl, a〉
Algorithm:
Let agenda = ∅
Add a to agenda
Let seen = ∅
Let Aisl = ∅
While agenda 6= ∅ do

Remove a1 from agenda
Add a1 to seen
Let Aisl = Aisl ∪ {C(a1)|C(a1) ∈ A}
For each R(a1,a2) ∈ A

Aisl = Aisl ∪ {R(a1, a2) ∈ A}
If R(a1,a2) ∈ A is SHI-splittable with respect to O then

Aisl = Aisl ∪ {C(a2)|C(a2) ∈ A}
else agenda = agenda ∪ ({a2} without seen)

For each R(a2,a1) ∈ A
Aisl = Aisl ∪ {R(a2, a1) ∈ A}
If R(a2,a1) ∈ A is SHI-splittable with respect to O then

Aisl = Aisl ∪ {C(a2)|C(a2) ∈ A}
else agenda = agenda ∪ ({a2} without seen)

Figure 4.1: Algorithm for computing an individual island [Wandelt 2011]
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Department A 

Professor A 

Course A Course B 

Student A Student B 

headOf 

teaches 

takes takes 

Department B 

Professor B 

Course C 
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headOf 

teaches 

takes 

Figure 4.2: Example of two similar graphs

Example Homomorphism To show the homomorphism in an example, we consider
once again our graph from Section 2.1. We say that the two graphs in Figure 4.2 are
similar. We can see that a homomorphism exists by definition from the left to the
right graph and vice versa, indicated by the dashed lines.

For a detailed formal description about similarity measures and entailment for indi-
vidual island graphs we refer to [Wandelt 2011].

In this section we have shown sets of individuals as an individual island representa-
tion of ABoxes. Our individual island approach can be seen as an generalization of
this approach. We have shown a formal foundation on why sets of individuals are
similar and how it can be used during reasoning. However, the problem of deciding
whether two graphs are similar is a hard problem. If the decision becomes too com-
plex, the similarity measure does not have any performace gain. We will show in the
next section how to further overcome these performance issues.

4.2 One Step Nodes

We discuss here a new data structure that allows us to quickly decide, whether two
individual islands are similar or not. This structure can be used to detect several
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dissimilar islands immediately. Only if this fails, we apply further techniques to find
a homomorphism.

The idea in general is to combine information on the original individual of the island
with information about the so-called pseudo node neighbors, which represent the
directly asserted successors of the root, to obtain the one-step nodes. Those nodes
can be used in addition to answer instance checks directly without any need to use
the specific island which is stored on an external server. Each one-step node stands
for one group of islands that are similar, which allows us to check the simplyfied
one-sted node instead of the complete island.

At first, we define a pseudo node successor with respect to an ABox.

Pseudo Node Successor Given an ABox A, a pseudo node successor of an indi-
vidual a ∈ NInd(A) is a pair pnsa,A = 〈rs, cs〉, such that ∃a2 ∈ Ind(A) with

1. ∀R ∈ rs.(R(a, a2) ∈ A ∨R−(a2, a) ∈ A),

2. ∀C ∈ cs.C(a2) ∈ A, and

3. rs and cs are maximal.

The third criterion is especially important as it says that for each pair of named
individuals 〈a, a2〉 the node a2 is exactly one pseudo node successor for individual
a.

Example for Pseudo Node Successors For the pseudo node successors we consider
our example ontology from section 2.2.3. By applying the pns criteria, we find the
pseudo node successors as:

• pnsann,AEx = 〈{headOf,Department}〉

• pnsann,AEx = 〈{teaches,GraduateCourse}〉

• pnssue,AEx = 〈{takes,GraduateCourse}〉

In the next step we will combine the set of pseudo node successors of a in ABox A,
the reflexive role assertions for a, and the directly asserted concepts of a, in order
to create a summarization object, called one-step node. The one-step node structure
can be defined as follows.
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One-Step Node Given an ontology O = 〈T,R,A〉 and an individual a ∈ NInd(A),
the one-step node of a forA, denoted osna,A, is a tuple osna,A = 〈rootconset, reflset, pnsset〉,
such that rootconset = {C|C(a) ∈ A}, reflset = {R|R(a, a) ∈ A∨R−(a, a) ∈ A},
and pnsset is the set of all pseudonode successors of individual a. The set of all
possible one-step nodes is donated OSN.

Example for One-Step Nodes With the definition of one-step nodes we are now
able to build the osn for Professor A in the previous homomorphism example (see
4.1). The corresponding one-step node lists as follows:

osnP rofessorA,A = 〈{Professor}, ∅, {〈{headOf}, {Department}〉, 〈{teaches},

{Course}〉}〉

As one-step nodes are nothing else than a summarization object for individual is-
lands, it is clear that not every one-step node is complete for instance checking.
However, Wandelt shows in his work that they are actually complete in the case
that a one-step node coincides with the individual island. For this case, he defines
so-called splittable one-step nodes, for which each role assertion to a direct neighbor
is SHI-splittable.

Splittable One-Step Node Given an ontology O = 〈T ,R,A〉, an individual a
∈ NInd(A) and a one-step node osna,A = 〈rootconset, reflset,pnsset〉, we say
that osna,A is splittable if for each 〈rs, cs〉 ∈ pnsset, a fresh individual a2 /∈ Ind(A)
and for each R ∈ rs, the role assertion axiom R(a, a2) is SHI-splittable with respect
to Ontology O∈ = 〈T ,R,A∈〉 with A∈ = {C(a)|c ∈ rootconset} ∪ {C(a2)|C ∈
cs} ∪ {R(a, a2)}.

In this section we have defined a structure for improved integrity checks for individual
island similarity. The one-step node allows to use instance on similar islands without
the need to load the island itself in the local memory. Only if that check fails, we
refer to an instance check on the specific individual island. In the following we will
further explain how to use these techniques for optimized reasoning.
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4.3 Optimized Reasoning

In the following we show instance checking and instance retrieval (see section 2.2.4)
in several examples and how to use them in an optimized way with the techniques
we have just introduced.

4.3.1 Instance Checking

Given an ontology O = 〈T ,R,A〉, an atomic description C and an individual a
∈ NInd(A), we want to check for O |= C(a). The process of instance checking can
be done in two steps. First, we just check the one-step node osna,A of individual a
for osna,A |= C(a). If this is true, we are done. Since we know that one-step nodes
are sound for instance checking with respect to O (compare [Wandelt 2011]). But
if we find osna,A |= C(a) not to be true, we have to distinguish two cases. At first,
if osna,A is splittable (see 4.2), we know that it already coincides with the original
island and we actually have osna,A 6|= C(a). But otherwise, if osna,A is not splittable,
then we have to load the individual island ISLa for a and perform instance checking
over the original island.

In the following we have an example for instance checking on one-step nodes. We
check, whether the individual ann is an instance of concept description chair. Let
the one-step node osnann,A be defined as follows:

osnann,A = 〈{Professor}, ∅, {〈{headOf}, {Department}〉, 〈{teaches},

{UnderGraduateCourse}〉}〉

Then a possible realisation of osnann,A is

ABox(osnann,A) = {Professor(ann), headOf(ann, a1), teaches(ann, a2),

Department(a1), UnderGraduateCourse(a2)}.

We can directly see from the notion that we have ABox(osnann,A) |= Chair(ann).
Thus, by soundness of one-step node reasoning O |= Chair(ann).

In a second example we want to check for c1 |= Chair with respect to O. The
one-step node osnc1,A looks like the following:
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osnc1,A = 〈{UnderGraduateCourse}, ∅, {〈{teaches−}, {Professor}〉,

〈{takes−}, {Student}〉}〉

A possible realization of the one-step node would be

ABox(osnc1,A) = {UnderGraduateCourse(c1), teaches(a1, c1), takes(a2, c1),

Student(a2), P rofessor(a1)}.

In this case it is easy to see that we have ABox(osnc1,A) 6|= Chair(c1). Thus, the
one-step node does not indicate entailment, we finally have to refer to the individual
island for checking soundness and completeness as osnc1,A is not splittable.

4.3.2 Instance Retrieval

Instance retrieval optimization is a direct extension of instance checking optimiza-
tion, such that we use one-step node similarity in addition. The first idea to solve
this problem is that you just apply instance checking on every individual in your
ABox. However, as there exist a one-step node similarity for similar islands, we say
that similar one-step nodes entail the same set of concept descriptions for named
root individual. Thus, given all one-step nodes, we can reduce the number of instance
checks.

We continue with an example of instance retrieval for the concept description Chair
with respect to ontology O. At first, we retrieve the set of all one-step nodes and for
each individual in A. The concluding one-step nodes are as follows:

osnann,A = osnmae,A = 〈Professor, ∅, {〈{headOf}, {Department}〉,

〈{teaches}, {UnderGraduateCourse}〉}〉

osnc1,A = osnc2,A = osnc3,A = 〈{GraduateCourse}, ∅,

{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

Christian Neuenstadt 35



4 Using Modules

osnee,A = 〈{Department}, ∅, {〈{headOf−}, {Professor}〉}〉

We are left with three instance checks as we have only three one-step nodes instead
of the six instance checks for each individual. For big ABoxes it can be shown that
instance checks are usually reduced by orders of magnitude.

We can directly see by instance check that ann and mae are instances of concept
Chair. Another instance check for ¬Chair shows that c1, c2 and c3 are individuals
of this concept description, if the input ontology is consistent. Thus, only ee remains.
Usually we would have to use an instance check over the individual island, but as
we know that osnc1,A 6|= chair and that osnc1,A and osnee,A are indeed splittable, c1
and ee can not be an instance of chair and we are done.

4.4 Concluding Remarks

In Chapter 3 basic ABox modularizations were defined. With our additional struc-
tures in this chapter we are able to perform instance checking in an optimized way
for a given individual and atomic concept description. We have also discussed opti-
mizations of instance retrieval. Therefore, we have introduced a similarity measure,
in order to reduce the number of necessary instance checks to perform instance
retrieval.

To determine the island similarity, we have introduced a structure called one-step
nodes. These are used as a kind of proxy to answer queries faster.

Christian Neuenstadt 36



5 Using Conjunctive Queries

5 Using Conjunctive Queries

In this Chapter we present our ideas for using conjunctive queries efficiently on
small ABox modules stored in an AllegroGraph triplestore. We will first propose
a theoretical solution for grounded conjunctive queries that we have introduced in
Section 2.2.5. Furthermore, we propose the new idea of skeleton queries, as we believe
these kind of structures are able to improve the performance of query answering for
grounded conjunctive queries with a huge benefit. Finally we will show how we are
able to easily rebind the use of SPARQL from queries on graph pattern to skeleton
queries for grounded conjunctive queries.

5.1 Grounded Conjunctive Query

For solving grounded conjunctive queries we can directly think of an naive approach,
which is based on instance checks over all individuals and combining these with
checks on each role assertion and for each individual in the query. This approach is
not efficient for huge ontologies and a lot of individuals. We will now shortly describe
this approach and show how we can improve it with skeleton queries.

A naive tableau-based algorithm for grounded conjunctive queries is split up first into
single components of concept assertion atoms and relation assertion atoms, to solve
each of these atomic elements for itself and join all elements afterwards. Consider
a conjunctive query for example, we take A(x) ∩ R(x,y) ∩ B(y) where x and y are
distinguished variables, A and B are concepts and R is a role. Naively we would
now solve A(x), B(y) and R(x,y) as three seperate queries and then join all result
bindings. But without any further optimization, we have to check and test every pair
of individuals in the ABox for solving each membership atom. For the membership
atom A(x) we can naively realize an instance check for each individual a by adding
the assertion a : ¬C to the ABox. The new ABox is then checked for consistency.
For the relationship atom R(x,y), for each individual pair a and b, we can add a :
¬∃RNb and b : Nb, to the ABox, where Nb stands for a new concept. The ABox is
then tested once again for consistency. Although there are optimizations that reduce
the number of tests that need to be performed, this approach remains fundamentally
impractical for large ABoxes. With the combination of an AllegroGraph triplestore
and a modulebased ABox strategy we will try to achieve much better results.
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5.2 Skeleton Query

For reducing individual checks we propose the usage of skeleton queries. Skeleton
queries are commonly used to suppress unwanted results in database queries. We
split up the conjunctive querying in two general steps. First, we want to reduce the
number of individuals as much as possible. Therefore, we use a combination of all
relationship axioms in a set query.

For simplicity, we can write a skeleton query as a set instead of as a conjunction of
atoms. If we stick to our previous example, we can write the introductory example
for conjunctive queries from Section 2.2.5 only consisting of roles.

{hasSon(x, y), hasDaughter(y, z), hasDescendant(x, z)}

Additionally to the roles, we want to save any resulting set binding to variables for
query answering. Those variables are given in the head of the query.

(x1, x2, x3)← {hasSon(x1, x2), hasDaughter(x2, x3), hasDescendant(x1, x3)}

Query answers are tuples (a1, a2, a3) of atomic individual names, that substitute the
variables of (x1, x2, x3).

As a result of the skeleton query, in which we can check for all role assertions at
once, we received a number of tuples. These tuples consist of a reduced number
of individuals. Thus, in a second step we only have to use instance checking per
tuple.

The AllegroGraph triplestore (see 2.4) allows to build simple structures of skeleton
queries by using the implemented query language SPARQL (see 2.4). With SPARQL
we can directly build all necessary query constructions by combining distinguished
variables within a set of role assertions. The resulting query binding can be used
as a tuple in a second step and specific instance checks for concept assertions on
individual names.

We basically use all role assertions and ignore information about the concept asser-
tions in the first step. AllegroGraph automatically responds in a binding set that
solves the used variables for each role assertion.
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As example for a skeleton query we can direcly refer the example from above and
ask “who is a grandmother who has a grandchild that is a student”. The skeleton
query in SPARQL is:

Listing 5.1: Example of a skeleton query
10 SELECT ?x ?z
11 WHERE {
12 ?x hasChild ?y.
13 ?y hasChild ?z.
14 ?x hasDescendant ?z
15 }

We only ask for grandparents and there grandchildren here as we only use role
assertions. The skeleton query reduces the amount of individuals to the group of
individuals who are grandparents and grandchildren. Thus, in a second step we check
the concept assertion of GrandMother on x and the concept assertion of Student on
far less individuals.

For instance tests we can rely on the reduced number of individuals in our small
modularization structures, shown in the last chapter. Therefore, we check first on
similar one step nodes. If the specific one step node does not model our concept
assertion, this is true for the case that we have chosen an splittable one step node
or have to make a second instance check on the corresponding island (see 4.3.1).

With the combination of reduced tuples and reduced ABox sizes we are able to show
an implementation of a new query system for grounded conjunctive queries.
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6 Implementation and Evaluation

In this chapter we want to show two things. First, we are able to use grounded
conjunctive queries on small individual island in a fast and efficient way with our
new idea of skeleton queries. Second, we don’t need to store our ABox in seperate
files before the preprocessing. We can, just as the usual workflow would be, make
use of the existing ontology on the triplestore and generate individual islands as well
as one step nodes directly on the fly by using simple SPARQL queries.

To demonstrate these issues we will first explain our implemented prototype and
give detailed evaluation results afterwards.

6.1 Implementation

In this section we will describe an implementation of a prototype consisting of two
parts. First, the introduced techniques and strategies of Chapter 4 are implemented
as a preprocessing step to create the necessary island and one-step node structures.
Additionally we explain internal data structures and show a server and client archi-
tecture that is capable of perfoming efficient query answering for grounded conjunc-
tive queries by relying on instance checks as well as instance retrieval and describe
how query answering is performed.

We will now describe the architecture of the client and server system. Basically, the
implemented system consists of two parts, a number of clients and a server system,
which is represented by the AllegroGraph triplestore (see 2.4). The servermodule is
completely used for storage of the relatively large assertional part of the database
in the external memory, the ABox. But due to the limited reasoning abilities of
AllegroGraph servers, the reasoning over data and the storage of the terminological
part has to take place on the client system. Therefore, we have to transfer any needed
assertional data to the client for reasoning. At the beginning, we start with the
complete ontology on the AllegroGraph store in one piece. During the preprocessing
process we will split up the ontology in more and more small modules directly on
the fly.

Although we can easily load assertional data into the AllegroGraph triplestore via
web interface, every input to the client itself via file or query systen has to be
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Figure 6.1: Basic Client- and Serverarchitecture

parsed and organized by a special Java Api. For this case we use the OWLAPI
(see [Horridge and Bechhofer 2009]), which is able to create and manipulate various
OWL Ontologies. It is available as an open source version under LGPL or Apache.

The communication between client and server consists basically of SPARQL queries
for query answering (see 2.4) and AllegroGraph statements for adding additional
triples directly to the ABox stored on the AllegroGraph server. Adding statements
on the triplestore is necessary as we save each island as a subgraph directly on the
AllegroGraph server. SPARQL queries are then used for the query process in the
second step (see 6.1).

6.1.1 The Preprocessing Step

In a first step the whole data system has to be set up before we can start query
answering. The necessary steps are described in Chapter 3 and 4. The client deter-
mines the extended ∀-info structure (see: 3.2) to generate splittability criteria (see:
3.2) for the description logic SHI.

Islands Based on these criteria, islands are built by the client on the fly via the
algorithm from Chapter 4 (see: 4.1). After creating islands all new generated triples
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are added to the triplestore as an islandstorage. For simplicity we use for each island
a seperate subgraph. This is straightforward as we just add another value to the
triple for creating a subgraph or link the triple to an already existing one.

One-Step Node Building homomorphisms is solved by the usage of hashvalues
with a sufficient bitlength. We first compute a set of root, pseudo node successors
and reflexive role assertions from each island to build the specific one-step nodes.
For each node, we immediately build a hashvalue and store it together with the
specific island on the triplestore. Identical hash values refer to identical one-step
nodes or corresponding similar individual islands. Thus, we only need to store a
single one-step node for each hashvalue and find homomorphisms automatically. As
the one-step nodes are each very small, we can keep those cached on the client
system. However, the used hash algorithm has to be appropriate. Thus, we do not
want any collisions, according to the number of individuals the bitlength of the hash
key must be chosen. For the evaluation purpose in this thesis a MD5 hash value was
found as sufficient.

6.1.2 Query Answering

The query process was implemented as described in 2.2.5. Conjunctive queries consist
of a conjunctive combination of concepts and role assertions, which are bound to
variables. To eliminate as many candidates for concept variables as possible in a
preprocessing step, we make use of skeleton queries (see 5.2). Therefore, the client
computes a SPARQL query consisting of all role assertions and bound variables. In
a second step we only have to use instance checks on the received tuples. Given the
concept description C from the query and the named individual a from the tuple,
we load the specific one-step node for a from the cache and determine whether osna

entails C(a). Depending on the outcome, three states are possible:

• Osna entails C(a), then a is actually a concept description of C.

• Osna entails ¬C(a) or ( does not entail C(a) and is splittable ), then a is
actually not a concept description of C.

• Osna is not splittable, then the client has to load and check the entire island
according to a to find out whether a actually is a concept description of C.

By eliminating all tuples that include individuals, which do not belong to concept
assertions used in the query, finally all remaining tuples are correct answers to the
original conjunctive query.
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Figure 6.2: User interface of a client node in preprocessing mode

6.1.3 GUI

The client comes along with an interface, that allows direct input for all necessary
user data. As well as the implementation, the user interface itself is also split into
two parts. The user is able to control the whole preprocessing process in the top
panel. He is able to generate islands and one-step nodes or one-step nodes only,
if islands do already exist. All one-step nodes are saved in a XML file during the
process. Thus, the creating step can also be skipped and loaded directly from file
for the next use of the database.

The second part of the user interface is about query answering. There is one panel
for instance checks, one panel for instance retrieval and one panel for conjunctive
queries. All panels can be used manually with a specific simplified syntax.

Additionally, there is a special tab available for automatic query answering. Queries
can be saved before program start in a XML library (in our example we use the
14 official LUBM test queries) and chosen to be automatically send to a predefined
number of servers and repositories. All query results together with runtimes and
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more information are saved in another XML file. This service called Autopilot was
implemented to simplify most of the test cases (see 6.2).

During the past section we presented the implementation of a query answering
client architecture, that uses an AllegroGraph triplestore as assertional database.
The client makes use of the explained optimizations for memory management and
conjunctive queries, we will evaluate all queries and tests in the following section.

6.2 The Evaluation

In this section we will present the evaluation result of the query answering proto-
type.

The used testset in this thesis is based on the Lehigh University Benchmark or
LUBM. This benchmark is an ontology system designed to test large knowledge bases
with respect to OWL applications. With the Description Logic of SHI we are able to
express all of the concepts used in the lubm benchmark. The data can be generated
automatically by a small Java tool the LUBMgenerator. Its terminological part is
rather small, it consists of 43 classes and 32 properties on that basis the TBox is
fixed, but the assertional part is very scalable and dynamic in size. Thus, it can easily
be generated in sizes necessary for the user. The whole setting in this database is
about the organisation of a university. A university consists of departments. Several
professors are members of each department. Professors teach courses. Students take
courses and so on. With help of the LUBMgenerator, the user can, given a number
n, generate n Universities each consisting of a random number of departments and
individuals.

As the number of individuals and the number of assertions increases nearly linear
with the number of universities, LUBM is a perfect instrument to test the perfor-
mance for query answering machines, especially for grounded conjunctive queries in
a growing ABox environment.

Sebastian Wandelt has already investigated the efficiency of ABox modularization
techniques for an SQL database server. He has shown modules with respect to SHI-
splittability and instance checks performed on them. In his method he used prepared
OWL files for loading the ontology into the client, work on each file seperately and
then load each block of modules iteratively onto the SQL server. In the following
evaluation we will show that we are able to do the whole process without fileprepa-
ration. We work directly on the server, convert the large ontology step by step into
small chunks and compare the generated modules on AllegroGraph store with the
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Figure 6.3: Preprocessing time for LUBM

modules of Sebastian Wandelt on the SQL server. For details on the results of Se-
bastian Wandelt see [Wandelt 2011].

6.2.1 Evaluating Modularization Techniques on AllegroGraph

In this section we will evaluate the preprocessing step, which are all the modular-
ization steps together for creating individual islands and one-step nodes. First of
all, many of the results for modularization techniques by the implementation in this
thesis are identical to the results of Sebastian Wandelt modules. Nearly every role
assertion in LUBM is actually splittable by SHI-splittability. The number of un-
splittable role assertions stays under one percent, despite an increasing number of
universities. The number of created ABox assertion modules increases also lineary.
For one university it is 18143, for two universities 40452 and for three universi-
ties 58947, which corresponds, as we expected, to the number of individuals in the
assertional part.

But next, if it comes to the load time of the preprocessing process, we can see big dif-
ferences in comparison to Wandelt in the time needed to build up the modularization
directly on the server. The modularization steps on the AllegroGraph server takes
far more time, than the modularization step in combination with the SQL-Server
of Wandelt. As you can see in Figure 6.3 the processing time for one university is
about 5000 seconds on AllegroGraph server, where it is like one minute on the im-
plementation of Sebastian Wandelt on a SQL-Server (estimated from his diagrams
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as we have no real data). Wandelt achieves this speed as he is not modularizing the
actual ontology on an external server, but an ontology saved in preconfigured OWL
files on the local host and uploading these modules in groups to his SQL server.

A runtime analysis of the used implementation shows that most of the time is used
on SPARQL queries to the allegrograph server. If we look at the queries used per
university, it shows that this is a serious issue. From Figure 6.4 we see that, for in-
stance, the modularization of one university takes nearly 200,000 (172,760) Queries.
Even at the slow rate of the preprocessing we are still at roughly 50 SPARQL queries
per second. This issue on query time has also been shown as we compared the needed
time between a connection to the AllegroGraph server on an external fast multipro-
cessor system and as a small virtual box implemented directly on the local host. A
Virtual Box is a simulated server with an simulated and seperate operation system,
where we implemented a version of the AllegroGraph triple store. Although these
simulated virtual servers have a slow performance in general, the virtual box is up
to three or four times faster compared to the external multiprocessor system (see
Figure 6.5).

Therefore, we see the decrease in performance is based on the increase of many
SPARQL mini queries between server and client. What is exactly as expected, be-
cause Wandelt uses a single query, where we need thousands of SPARQL queries to
be able to solve the modularization step on the fly. Nevertheless, this is sufficient.
To show that a direct implementation on existing ontologies is possible without any
need of preconfiguration in small files on the client was one of our main goals

We can even think of improvements to the server and client communication. The
implemented prototype uses at least one query per splittability check, so one way
of solving would be the implementation of an intelligent streaming module that
streams and prunes queries at the right time for reducing the number of queries.
But however, the problem on a huge amount queries between server and client has
not been solved yet.

Furthermore, the increase of our processing time is even not linear. It is close to
linear, but increases even more with an increasing number of universities. There
are additional two reasons for the non-linearity in the preprocessing time. The data
structure of the AllegroGraph server can not guarantee a complete linearity. It uses
optimization and indexing technologies with the increasing size of assertional data.
This works only well if the system does not read data again during the update phase.
But, as we use regular updates, our system works directly on the database. The
second reason can be found on the client side within unsufficient caching strategies.
As for module creation every role assertion has to be checked several times for
splittability. For reasons of memory efficiency with the java garbage collector not
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Figure 6.4: Number of SPARQL for LUBM modularization per university

every data is cached in the prototype. So an increasing number of information has to
be received from the server several times with an increasing number of universities.
This problem could also be solved with an intelligent streaming architecture that
caches data of past splittability checks in an efficient way and does not have any
need for rechecks.

6.2.2 Evaluating Conjunctive Queries

In this section we will evaluate the use of grounded conjunctive queries on the Alle-
groGraph triplestore. For evaluating grounded conjunctive queries, LUBM provides
14 predefined test queries, which check several criteria of the database.

Correctness of Query Answers The designer of LUBM (see 6.2) provides 14 query
answers for an ontolgy of the size of a single university to the 14 test queries. By
comparing our results with those from the provided answers, we can check our client
and algorithm on correctness. The 14 answers of LUBM and the 14 answers of our
clientsystem are identical. Therefore, we believe our algorithm on modularization
and query answering works correct and the evaluation results are reliable.

High and Low Selectivity for Queries The provided queries differ in the amount
of input, selectivity and reasoning behaviour for example by using role hierarchy or
transitivity. Selectivity basically means that the grounded conjuctive queries we use
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Figure 6.5: Comparison between load on an external server and a local virtual box

have roles that automatically includes many individuals, which we call barely sen-
sitive, or automatically excludes a lot of individuals, what we call a highly selective
query.

For example we use the role assertion takesCourse. TakesCourse is a connection
between the concept descriptions student and course. So if we use the construct A
takesCourse B in a conjunctive query, we already excluded any non Student for A
and any non Course for B. However, as there are a lot of individual students in the
ABox we still see this query as low selective. In the second step of query answering
we have to consider the variables A and B. Let’s say A are only undergraduateStu-
dents and B undergraduateCourses only, so for every A and B we need additional n
instance checks, where n is the cardinality of A and B, to make sure we only have
undergraduateStudents and undergraduateCourses. The result is, that the more less
selective our query is, the more instance checks we do need afterwards and the more
time consuming those checks are. In Figure 6.6 we see a direct comparison between
low selective and high selective queries. In the highly selective query we ask for all
chairs, as there is only one chair per Department, we call this query highly selec-
tive. The figure shows the relatively high amount of consumed time for the barely
selective clearly. This gap even increases with an increasing number of universities.
The reason for not increasing for the highly selective is because of the fast and small
number of instance checks compared to the single skeleton query, which takes most
of the time in this case.
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Figure 6.6: High and low selective queries compared in time

For the given reasons low selective queries always have a huge extra load on instance
checks over the network. In these cases the implemented skeleton query is not able
to exclude enough individuals for later instance checking. As so many extra queries
are needed, the bottleneck stays in the network connection and server management
of the AllegroGraph triplestore.

Skeleton Query To demonstrate that our skeleton query is able to significantly
improve the results for queries with high selectivity, we compare the approach of
skeleton queries with the naive approach without skeleton queries (see 5.1) in Figure
6.7. One can directly see the huge performance gain of the skeleton query. For this
Example we have chosen a highly selective query, which shows really good results.
We avoid a lot of instance checks and can therefore decrease the answering time by
a factor of about 1000, depending on the number of individuals in the ontology.

Server Caching Another aspect that the allegrograph server does is somehow the
caching of query answers. You can see in Figure 6.8 how the querying process behaves
after several rounds of query answering.

Here you see again how the runtime is effected by the server querytime. It shrinks
to a tenth if the answer is in the cache of an allegrograph server.
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Figure 6.7: Comparison between skeleton query and naive approach.
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7 Conclusion

In this thesis we extended the ABox modularization strategies of Sebastian Wandelt
to the efficient use of grounded conjunctive queries on AllegroGraph servers. We
had two main goals. First, we showed that we don’t need prepared files in which
we store the ontology. We can compute all modules on the client by directly use of
the AllegroGraph store. Second, we came up with an efficient way to use grounded
conjunctive queries with modules, which is much faster than an naive approach
would be.

Results The evaluation of the implemented prototype showed how grounded con-
juctive queries on AllegroGraph servers are possible by using only a small size of
main memory. The main strategy is to use a skeleton query and try to keep the
necessary amount of instance checks in the second step as small as possible. But
as the number of results for barely selective queries can be quite large, the number
of instance check queries on AllegroGraph servers increases rapidly. The strategy
makes profit of highly selective queries. In these cases performance is very good,
as the number of queries to the server stays small. More queries are reducing the
performance.

This mass of queries is also an issue that we have witnessed for the preprocessing
step on the AllegroGraph Server. For every rolesplit and check for SHI-splittability
queries to the server are needed. Thus, if we have to check millions of statements, we
also need millions of queries. This also creates a huge load on the network connection
as we have to wait for each query answer. Our studies showed that even a small local
virtual box server is way faster compared to an external multiprocessor and multicore
machine.

Outlook These results lead to several ways of possible future improvements. The
usage of query answering could be improved on the client or in a improved new
system architecture. Someone could think of a streaming implementation when it
comes to querying, where we stream more data at once and prune the current stream
where possible. If this is used in an intelligent behaviour and the client could for
instance check the splittability of more than one role assertion in one query, we
would decrease the number of needed queries for the system to a huge amount.
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Another possible improvement is the use of parallel working threads for instance
checks or splittability criteria that are distributed on several cores of the processor.
If instance checks take place on the client only, as in the case of one-step nodes, the
usage of threads could be a serious issue for the large number of instance checks that
are needed.

The next step from one client is to a system architecture that uses several clients or
even several servers. If we share the one-step nodes on all clients we can distribute
instance checks to specific clients and use only their results as a boolean function.
One idea is to use all one-step nodes on all clients and a server node, that dis-
tributes all checks in a optimized way. In another version we could only distribute
a specific unique set of one-step nodes to the clients to keep the used memorysize
even smaller. Furthermore, we are able to reduce the networkload not only by usage
of distributed client nodes, but also by several servers. The AllegroGraph server im-
plements a feature that is able to make use of several servers, which are combined
to one serversystem. Thus, the same possible strategy for one-step nodes could be
used for the islands itself on AllegroGraph servers.

Apart from performance improvements we can also think of improvements in the
direction of more expressive query languages. In this thesis we used grounded con-
junctive queries only, but the next logical step would be towards the usage of non-
grounded conjunctive queries. Grounded conjunctive queries only have solutions that
exists as named individuals in the ABox. The extension to standard conjunctive
queries is harder, but could be realised by an engine that automatically updates the
ABox of the client and server by adding new concept descriptions.

Finally, we could think of more comprehensive studies on the present work. We
believe that our results carry over to other ontologies. But we can think of ontologies,
which use role assertions that are very rarely splittable and makes the modularization
more difficult. Growing ABox modules can also have an impact on each instance
check and thus the whole query answering.
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