
Introducing Layers of Abstraction

to Semantic Web Programming 1

Bernhard G. Humm, Alexey Korobov

Hochschule Darmstadt – University of Applied Sciences,

Haardtring 100, 64295 Darmstadt, Germany

Bernhard.Humm@h-da.de

Abstract: Developers of ontologies and Semantic Web applications have to

decide on languages and environments for developing the ontology schema,

asserting statements, specifying and executing queries, specifying rules, and

inferencing. Such languages and environments are not well-integrated and lack

common abstraction mechanisms. This paper presents a concept framework to

alleviate those problems. This is demonstrated by a complex sample

application: reasoning over business process models.

Keywords: Semantic Web, software engineering, business process models,

Lisp, Prolog

1 Introduction

Developers of ontologies and Semantic Web applications often face the following

questions:

 Which language and environment shall be used for developing the ontology

schema? For example, when developing a Semantic Web application for reasoning

over business process models, the schema may include classes like

―BusinessProcess‖ and ―Activity‖ and properties like ―hasBusinessProcess‖. In

many projects, a graphical ontology development environment like Protégé or

TopBraid Composer is chosen to develop the ontology schema in languages such

as RDF, RDFS, and OWL.

 Which language and environment shall be used for asserting statements? Example

in the business process domain: ―CompanyABC hasBusinessProcess

TravelManagement‖. While such statements may be added manually to an

ontology in a graphical ontology environment, they usually have to be asserted

dynamically by an application. For this, Semantic Web frameworks are used which

allow to embed Semantic Web languages such as RDF, RDFS, and OWL into

general purpose programming languages like Java. Examples for mainstream

Semantic Web frameworks are Jena and Sesame.

1 This research was funded by Zentrum für Forschung und Entwicklung (ZFE), Hochschule

Darmstadt – University of Applied Sciences under grant number 419 327 01.

 Which language and environment shall be used for specifying and executing

queries? Example: ―Which companies have business processes for travel

management?‖ Semantic Web query languages like SPARQL allow for querying

ontologies. Where SPARQL queries usually can be executed from graphical

ontology development environments, this usually is used for demonstration and

testing purposes only. As with asserting statements, queries usually have to be

executed dynamically from a Semantic Web application and the query results are

processed further, e.g. displayed on a Web page. Again, Semantic Web

frameworks allow to embed Semantic Web query languages such a SPARQL and

further process the results.

 Which language and environment shall be used for specifying rules and

inferencing? Example rule: ―If two business processes have similar names then

they are likely to be in the same business domain‖. Standardized Semantic Web

rule languages like RIF or proprietary rules languages like Sesame Rules may be

embedded in Semantic Web frameworks.

These questions lead to a number of issues or problems.

 Developing ontology schema: Manually developing an ontology schema in

RDF/XML is not feasible due to its most verbose syntax. N3 is the most concise

and suitable syntax for developing ontology schemas manually. However, it still

lacks abstraction mechanisms. Every statement must be developed in the simple

triple notation. The only grouping mechanisms are semicolon and comma notations

for avoiding repetitions of subjects and subject / predicate combinations. For

example, it is not possible to define a concept ―reification‖ with three input

parameters (subject, predicate, object) and a blank node as an output parameter.

Instead, each reification requires the (redundant) specification of three triples with

predicates rdf:subject, rdf:predicate, and rdf:object.

Graphical ontology development environments largely alleviate those problems,

for instance, by providing wizards for reifying statements. However, developers

cannot define similar abstractions on their own.

 Asserting statements: a single triple to be inserted into a RDF store via

deserializing RDF / RDFS / OWL takes a single line of N3 code. In contrast,

adding the same triple programmatically via a Semantic Web framework like Jena

or Sesame takes about 15 lines of Java Code2. This includes repository and

connection handling, instantiating objects for resources and literals, asserting

statements, and exception handling. So, simple statements cannot be expressed in a

concise way as is possible in N3.

On the other hand, Java offers mechanisms for defining abstractions such as

classes and methods. A method ―reify‖ taking ―subject‖, ―predicate‖, and ―object‖

as input parameters and returning a reified blank node may be implemented once

and then used many times wherever reification is needed in this form.

 Specifying and executing queries: SPARQL is a concise query language, similar to

N3. However, it, too, misses abstraction mechanisms. Where SPAR QL V1.1 intro-

2 Basis: code samples from the Sesame User Guide

http://www.openrdf.org/doc/sesame2/users/ch08.html

http://www.openrdf.org/doc/sesame2/users/ch08.html

duces subqueries, it still lacks named, parameterized queries that can be invoked as

subqueries. For example, a query for all companies that provide business process

?x cannot be defined once and then re-used in many queries. Copying and pasting

similar SPARQL WHERE parts is, therefore, common practice, leading to

redundant code which is difficult to maintain.

Also, executing SPARQL queries from within Semantic Web frameworks is

cumbersome. For example, in Sesame it takes about 20 lines of Java code to

evaluate a one-line SPARQL query. This includes connection handling, query

preparation and evaluation, iterating result set, identifying individual results, and

exception handling.

 Specifying rules and inferencing: While SPARQL is the standard Semantic Web

query language, a de-facto Semantic Web rule standard has not yet emerged.

Embedding rules in Semantic Web frameworks faces the same usability issues as

asserting statements and executing queries.

In total, different languages and environments, all with their strengths and

weaknesses, but not well integrated in a useable fashion impede developing

ontologies and Semantic Web applications. In particular, abstraction mechanisms in

Semantic Web languages and technologies are limited. We have developed a

framework for concepts that addresses those issues – see the following section.

2 A Concept Framework for Semantic Web Programming

2.1 Environment

For the implementation of the concept framework, we have chosen AllegroGraph, a
commercial Semantic Web framework by Franz Inc.. AllegroGraph is based on Lisp,
in particular Allegro Common Lisp, a professional implementation of the ANSI
Common Lisp standard. It supports RDF, RDFS, SPARQL, and the OWL subset
RDFS-Plus.

AllegroProlog is used as reasoning and query language. AllegroProlog is a Prolog
implementation by Franz Inc., fully integrated in Lisp. It allows Prolog programming
in Lisp notation.

It shall be noted, however, that the concept framework described in this paper is not
specific to Lisp, Prolog, AllegroGraph, or AllegroProlog.

2.2 Our Use of the Term “Concept”

Encyclopedia Britannica defines concept as: ―an abstract or generic idea
generalized from particular instances‖ [1]. This definition is valid for our purposes.
Additionally, our notion of concept is always in the context of an application domain
for which an ontology or a Semantic Web application is developed. For example, in the
application domain of business process models, UML activity [2] is a concept.

2.3 A DSL for Specifying Concepts

We have developed a simple Domain-Specific Language (DSL) [3], called concept
DSL, that allows for specifying concepts. The basic features of the concept DSL are as
follows:

 define-concept specifies a new named concept with 0..n concept parameters.

 triple allows for using all provided RDF, RDFS, and OWL constructs as well as

self-defined classes, instances, and properties.

 <concept> allows for using all lower-level, more concrete concepts previously

defined via define-concept by their names.

In summary, concepts form trees with triples as leaves and other concepts as inner
nodes.

Advanced features of the concept DSL are as follows:

 &optional allows specifying optional concept parameters.

 local allows using local variables within concept specifications. Local variables

are particularly useful for introducing blank nodes and for generating URIs.

 cond allows for specifying pre-conditions to be checked before asserting

statements, reasoning, and querying.

 <name space>:<concept name> allows for using identical concept names in

different name spaces for different application contexts. They support the

development of large ontologies. Where used, name space identifiers precede a

concept name, separated by a colon.

In summary, a concept specification in a BNF-like notation [4] is as follows:

(define-concept <concept> (<parameter>*

 [&optional <parameter>*])

 [(local <variable> <expression>)]

 [(cond <expression>)]

 ([<namespace>:]<concept> <parameter>*)*

 (triple <subject> <predicate> <object>)*)

Example: concept of an RDFS instance

(define-concept instance (uri class &optional label comment)

 (triple uri !rdf:type class)

 (triple uri !rdfs:label label)

 (triple uri !rdfs:comment comment))

The concept specification uses triple only. The exclamation mark (Wilbur reader
macro) indicates a Semantic Web URI.

Example: concept of a node in a graph:

(define-concept node (uri node-type graph label

 &optional comment)

 (cond (sub-class node-type !modl:node))

 (instance uri node-type label comment)

 (triple graph !modl:contains uri))

The higher-level, more specific concept node uses the lower-level, more general

concepts instance and sub-class.

2.4 Framework Implementation

At compile time, the concept framework parses each concept specification and
generates the following source code.

1. Lisp function for asserting statements: The function has the same name and

parameters as the concept. Optional concept parameters are being handled using

Common Lisp’s &optional feature. Local concept variables are being handled via

Lisp variables. The expression following cond are implemented as pre-conditions.

Triples with respective subject, predicate, and object are asserted to the triple store

using the AllegroGraph built-in function add-triple. For lower-level concepts

being used, the respective Lisp function is invoked and the parameters are passed.

2. Prolog predicates for reasoning and querying: The predicates are named after the

concept and contain all mandatory parameters. Since Prolog does not support

optional parameters, optional concept parameters are being handled by generating

multiple predicates with increasing numbers of parameters. Local concept variables

are handled via Prolog variables. Expressions following cond are implemented as

conjunctive goal terms. Different predicates allow for reasoning and querying with

and without local variables. The built-in AllegroProlog predicate q- is used to

prove against asserted triples in the triple store. For lower-level concepts being

used, the respective Prolog predicate with its parameters is used as a conjunctive

goal term.

Fig. 1 illustrates concept specification and generated Lisp function and Prolog
predicates by the example of the concept node.

In the example, the Lisp function node is generated from the concept node and
may be used as follows.

(node !trv:req-app !uml:activity !trv:uml "request approval")

The example shows a statement about a node in an UML activity diagram.

Concept Specification
(example)

(define-concept node (uri node-type graph label &optional comment)

(cond (sub-class node-type !modl:node))

(instance uri node-type label comment)

(triple graph !modl:contains uri))

Code Generation

(node !trv:req-app !uml:activity

!trv:uml "request approval")

(select ?label

(node nil !uml:activity nil ?label))

Asserting Statements
(example of usage)

Reasoningand Querying
(example of usage)

Fig.1: Concept definition and code generation

A query using the generated Prolog predicate node may look like this:

(select ?label (node nil !uml:activity nil ?label))

The query returns the labels of all nodes of type !uml:activity, in this case

"request approval". nil indicates a don’t care parameter value, e.g., the node’s
graph is irrelevant in this query.

The implementation of the concept framework is straight forward and comprises
only about 100 lines of Lisp code excluding comments and blank lines. The core is the
Lisp macro define-concept which generates Lisp code at compile time using the
built-in Common Lisp macro processor.

3 Application: Reasoning over Business Process Models

We have applied the concept framework in a complex Semantic Web application
that allows reasoning over business process models. In this section, we explain a
sample application scenario, give an overview of the application, and show simple
examples.

3.1 Application Scenario

Consider the following application scenario: Two companies decided to merge. To
leverage synergies, their business processes shall be aligned. Business processes are
modeled in numerous models in different formats in both companies, e.g., as UML
activity diagrams, Event-Based Process Chain (EPC) diagrams, and Business Process
Modeling Notation (BPMN) diagrams. The task of the application is to pre-select
similar business process models to support human experts in their detailed analysis.

For this, we transform different business process models into an ontology and use
reasoning mechanisms for detecting similarity between models.

3.2 Sample Business Processes

Consider, e.g., the process models for business travels in Fig. 2, one represented as
an EPC diagram and the other one as a UML activity diagram. Both diagrams
represent business processes for business travels – similar in content, but different in
the modeling notations used as well as in details.

3.3 Language Stack and Layers of Abstraction

DSL stacking [7] is a form of layering where higher-level, more specific DSLs are
implemented on lower-level, more general DSLs. The concept framework is designed
to enable DSL stacking in Semantic Web applications. See Fig. 3 for the language
stack of the business process reasoning application.

Allegro Common Lisp is the base language in which AllegroGraph and
AllegroProlog are implemented. The concept framework uses functionality of both
libraries. Using the concept framework, a layered set of concepts is defined for the
application domain, business process models: concrete modeling notations like UML
activity diagrams and EPC diagrams on top of general graph based models on top of
general Semantic Web concepts. Concrete reasoning applications can be implemented
using those concepts.

business
trip

planned

request
approval

trip plan
approved

trip plan
declined

attend trip

claim for
expenses

travel
summary

receipts

V

plan business trip

request approval

attend buisness trip

claim for expenses

approved

declinedreplan

Fig. 2: Example business processes as EPC and UML activity diagram

Allegro Prolog + Utilities

Allegro Common Lisp + Utilities

AllegroGraph + Utilities

Semantic Web Concepts

UML Activity Diagrams EPC Diagrams

Graph-based Models

Concept Framework

Reasoning Applications

. . .

Layers of
abstraction

Fig. 3: Language stack

3.4 Concepts

Fig. 4 gives an overview of concepts being defined in the various layers of the
business process reasoning application. One example concept, UML activity, is
zoomed out.

UML activity is implemented using the general graph concept of a node. Node
itself is implemented using the Semantic Web concept of an instance. Instance is
implemented using triple from the concept framework.

The concept activity is defined as follows:

(define-concept activity(uri label diagram &optional comment)

 (node uri !uml:activity diagram label comment))

With the concept activity defined on top of the concept node, the creation of a
UML activity node can be expressed more concisely as in Section 2.4 as follows:

(activity !trv:req-app "request approval !trv:uml)

Using the concept follows, the edges of the UML activity diagrams can be
asserted, e.g.,

(follows !trv:split !trv:req-app)

This code for asserting statements is typically generated, for example, from the
XML output of a UML tool.

Allegro Common Lisp + Utils

AllegroGraph + Utils Allegro Prolog + Utils

Concept Framework

Semantic Web Concepts

Graph-based Models

UML Activity Diagrams EPC Diagrams . . .

Reasoning Applications

depends on depends on

depends on depends on

Concept Generator

define-concept

triple

depends on depends ondepends ondepends on depends on

uses

uses

uses

rdfs-class subclass instance property subproperty superproperty inverse-property transitive reification

model-package node-type subnode-type node edge-type edge corresponds-to

epc-function event followed-byepc-resource

decision-xordecision-or

has-resource

join-xorjoin-orjoin-anddecision-andactivity

start end

split joindecision-split

decision-join followed-by

triple

instance

node

activity

Fig. 4: Sample concepts

3.5 Querying and Reasoning

Asserted statements can conveniently be queried using the Prolog predicate
generated from the concept specification – see the example in Section 2.4. In this
section, we show how the concept framework supports the development of reasoning
applications.

Determining the similarity between business process models is a complex task. We
can rate similarity between two business process models concerning different aspects.

 Diagram: similarity of diagram titles and diagram types

 Nodes: similarity of node names and node types

 Structure: similarity of edge structures, e.g., similar nodes following other similar

nodes

The following sample AllegroProlog rule detects a simple aspect of similarity
between nodes, namely identical labels.

(<- (label-equivalence ?label ?n1 ?n2 ?d1 ?d2)

 (node ?n1 nil ?d1 ?label)

 (node ?n2 nil ?d2 ?label))

The rule consists of the head term (label-equivalence …) and the goal terms

(node …). If all goal terms can be proven then the head term is proven. The example

reads like this: if two nodes ?n1 and ?n2 can be found in two diagrams ?d1 and ?d2

and their labels are identical (?label) then label-equivalence is true. For this

predicate, the predicate node is used. It is satisfied no matter whether the nodes are
UML activities, EPC functions or of any other node type. This is expressed by using
nil as node-type parameter. The identity of the labels is assured via unification of

the variable ?label.

The following query selects all labels that occur as identical node names in any two
diagrams.

(select ?label (label-equivalence ?label ?n1 ?n2 ?d1 ?d2))

Assuming that all nodes of the EPC diagram and the UML activity diagram in
Fig. 2 have been asserted, the result is

("request approval" "claim for expenses")

When providing different parameters to the select statement, the following queries

may be formulated using the predicate label-equivalence, all consisting of a
single line of code in the query body:

1. Find equivalent labels in two specified diagrams

2. Instead of the labels, select the URIs of the nodes with identical labels in two

diagrams

3. Select all diagrams in which there are identical node labels as in a given

diagram

4. Select all pairs of diagrams with equivalent labels

5. Select all duplicates within one diagram

6. Select all duplicates within all diagrams

Many more types of queries may be expressed with this simple Prolog predicate.

We now present a more complex sample predicate to reason over structural
similarity between diagrams.

(<- (succ-equivalence ?src1 ?src2 ?dest1 ?dest2 ?d1 ?d2)

 (label-equivalence ?lsrc ?src1 ?src2 ?d1 ?d2)

 (label-equivalence ?ldest ?dest1 ?dest2 ?d1 ?d2)

 (follows-transitively ?dest1 ?src1)

 (follows-transitively ?dest2 ?src2))

The predicate checks for successor equivalence, i.e., whether two pair wise
equivalent nodes in two models follow each other – either directly or indirectly
(follows-transitively). The possibilities of different meaningful queries using

predicate succ-equivalence are even greater than the ones for label-

equivalence. There is an enormous amount of different meaningful queries, each

with a single line of code in the query body using the predicate succ-equivalence.

4 Evaluation

4.1 Comparison with Semantic Web Technologies

We now compare implementing ontologies and Semantic Web applications with
and without using the concept framework.

For asserting statements consider, again, the example UML activity (Section 4.4).
In N3, the equivalent assertion would be as follows:

trv:req-app rdf:type uml:activity;

 rdfs:label "request approval".

trv:uml modl:contains trv:req-app.

The assertion using the concept activity is more concise: 1 loc (line of code)
compared to 3 loc in N3 notation, respectively 9 loc in N-triples notation, 15 loc in
RDF/XML, and about 15-20 loc in the Semantic Web framework Sesame.

The concept activity hides implementation details: the use of class

uml:activity and the use of properties rdf:type, rdfs:label, and

modl:contains.

For comparing queries, consider the simple example of querying for label
equivalence in Section 3.5. In SPARQL, the equivalent query would be as follows:

SELECT ?label WHERE {

 trv:uml modl:contains ?node1.

 trv:epc modl:contains ?node2.

 ?node-type1 rdfs:subClassOf modl:node.

 ?node1 rdf:type ?node-type1;

 rdfs:label ?label.

 ?node-type2 rdfs:subClassOf modl:node.

 ?node2 rdf:type ?node-type2;

 rdfs:label ?label.}

The WHERE part of the query comprises 8 lines of SPARQL code. In comparison,
the WHERE part of the Prolog query using label-equivalence comprises 1 loc –

with the definition of label-equivalence comprising 3 loc. Many other queries
like, for example, selecting duplicates within diagrams (for more examples, see
Section 3.5) may be formulated using label-equivalence – the WHERE part
always being a one-liner. Using SPARQL, every single WHERE part has to be
programmed individually and would comprise about 8 loc each time. Invoking the
SPARQL query from a Semantic Web framework like Sesame adds about another 20
loc each.

Comparing more complex assertions and queries, the differences in code size even
get larger. For example, one SPARQL query for the successor equivalence example
from Section 3.5 comprises 16 loc compared to the one-liner in the Prolog query using
succ-equivalence (definition: 5 loc). Varying the parameters passed, dozens of

different Prolog queries may be formulated using succ-equivalence – with 1 loc
each. Every equivalent SPARQL query would comprise about 16 loc (SPARQL) plus
about 20 loc (Java) in the Semantic Web framework each.

4.2 Related Work

Many publications discuss the layering of Semantic Web languages (e.g., [5], [6]).

Whereas those publications focus on the expressive power of the underlying

languages and mechanisms, we take a Software Engineering view focusing on the

ontologies and application code to be developed.
Humm and Engelschall introduce a method called DSL stacking [7]. According to

the paradigm of Language-Oriented Programming, an application for a problem should

be implemented in the most appropriate domain-specific language (DSL). DSL
stacking is a method for implementing Language-Oriented Programming where DSLs
are incrementally developed on top of each other thus providing layers of abstraction.
The concept framework can be seen as a DSL stacking platform for the Semantic Web.

Knublauch introduces the SPARQL Inferencing Notation (SPIN, [8]). He also
identifies the lack of abstraction mechanisms in Semantic Web technology. SPIN
targets the same goals as the concept framework. It introduces so-called SPIN
functions that are SPARQL functions which can be used in FILTER or LET
statements. SPIN Templates are re-usable SPARQL queries that can be instantiated
with parameters. SPIN templates can be used instead of typing in SPARQL queries by
hand. Thus, SPIN functions and templates introduce named queries that can be invoked
as subqueries which is not possible in the current SPARQL standard. The crucial
difference to the concept framework is that asserting statements and querying are
handled separately. In the concept framework, one concept definition may be used for
asserting statements and reasoning / querying.

In [9], Eiter et al. present an approach for integrating rules and ontologies in the
Semantic Web. The approach combines answer set programming with description
logics. The rules being used are similar to Prolog rules with negation as failure. They
may contain queries. Eiter et al. claim an encapsulation view that increases flexibility
to be one advantage of their approach. Our approach of using Prolog rules in Semantic
Web applications has a similar aim. It also allows for reasoning and querying. It fosters
encapsulation and we also claim increased flexibility as a result. While Eiter et al.
provide a sound conceptual basis for integrating rules and ontologies, however, they do
not cover abstraction and encapsulation mechanisms for asserting statements.

In [10], Le-Pouc et al. identify limited software support and the lack of standard
programming paradigms in Semantic Web standards. To alleviate those problems, they
introduce Semantic Web Pipes to support fast implementation of semantic data mash-
ups while preserving abstraction, encapsulation, component-orientation, code re-
usability, and maintainability. They present piping operators including the
CONSTRUCT and SELECT operators that allow using results of SPARQL queries to
be used in further processing. We do agree with their analysis of the state-of-the-art in
Semantic Web programming. Their solution has similarities with our solution in that
higher-level, more specific named constructs (here: pipes) can use lower-level, more
general constructs. Again, as with [8] and [9], the difference to our approach is the sole
focus on querying, not on asserting – thus solely focusing on the Semantic Web
application developer and not, additionally, on the ontology modeler.

5 Conclusions

We have presented a novel approach for realizing layers of abstraction in ontology
modeling and Semantic Web applications. A concept framework allows specifying
higher-level, more specific concepts on top of lower-level, more general concepts.
From concept specifications, code for asserting statements (Lisp functions) as well as
for reasoning and querying (Prolog predicates) is being generated. We have shown that
using the concept framework considerably reduces code size of ontologies and
Semantic Web applications. The amount of code savings can fairly be considered an

order of magnitude. Using the concept framework furthermore enhances software
quality regarding conciseness, understandability, and maintainability of the resulting
code.

We have successfully used the concept framework in a complex application
domain: reasoning over business process models. In this article, we have only shown a
small and simple exemplary subset of the ontology and sample predicates for reasoning
similarity. Additionally, we have implemented similarity metrics including linguistic
analyses such as synonym resolution. In addition to similarity, we provide predicates
for checking consistency of business process models and conformance to reference
architectures. Our application not only covers the application scenario of mergers and
acquisitions, but also the broader application scenario of e-business integration.

So far, our development is in the research and prototyping stage. Current and future
work includes the following:

 Improving the stability of the concept framework

 Providing means for dedicated performance optimization of generated predicates

where necessary

 Porting the concept framework to Semantic Web environments based on

mainstream platforms like Java

We feel that our approach could, eventually, considerably improve the way
ontologies and Semantic Web applications are developed in the future.

6 References

[1] Encyclopedia Britannica Ultimate Reference Suite 2010

[2] Havey, M.: Essential Business Process Modeling. O'Reilly Media, Sebastopol, CA (2005)

[3] van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35, 26—36 (2000)

[4] Backus, J.W.: The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM Conference. In: Proceedings of the International Conference
on Information Processing, pp. 125—132. UNESCO (1959)

[5] Horrocks, I., Parsia, B., Patel-Schneider, P., Hendler, J.: Semantic Web Architecture:
Stack or Two Towers?, Springer Berlin / Heidelberg (2005), pp. 37-41

[6] Kifer, M., de Bruijn, J., Boley, H., Fensel, D.: A Realistic Architecture for the Semantic
Web, Springer Berlin / Heidelberg (2005), pp. 17-29

[7] Humm, B., Engelschall, R.: Language-Oriented Programming via DSL Stacking. In:
Proceedings of the 5th International Conference on Software and Data Technologies
(ICSOFT 2010), pp. 279—287. Athens, Greece (2010)

[8] Knublauch, H.: The Object-Oriented Semantic Web with SPIN.
http://composing-the-semantic-web.blogspot.com/2009/01/object-oriented-semantic-web-
with-spin.html (2009)

[9] Eiter, T, Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. In Proc. KR2004. AAAI
Press (2004)

[10] Phouc, D. L., Polleres, A., Morbidoni, C., Hauswirth, M., Tummarello, G.: Rapid
Prototyping of Semantic Mash-Ups through Semantic Web Pipes. In Proceeedings of the
18th International World Wide Web Conference (WWW2009), ACM, Madrid, Spain
(2009)

