
Traditionally associated with research,
CL/CLOS is now built into products
and is in mission critical use by large
corporations. A few examples of
commercial successes include creating
video games, web authoring applications
and semiconductor design systems (See
side bar).

Common Myths
Many shrink from using CL/CLOS

because of myths. Maybe true fifteen
years ago, they are now outdated.
• Special machines are needed.

CL/CLOS is found across the whole
spectrum of computers from
Windows PCs to Unix workstations
- even Linux. Like most other
languages, you can link CL/CLOS
applications to other systems such as
the Web, COM and CORBA
components, SQL databases, and
dynamic link libraries (DLLs).
Indeed, these technologies have
evolved since 1985 specifically to
allow applications written in
different languages to communicate.

• CL/CLOS is slow. Since 1985, PCs
have become 100 times faster.
Much slower languages, such as Java
and Visual Basic, have become
popular. Today, CL/CLOS can run
effectively on any standard PC and
its implementations are faster.

• CL/CLOS is too large. Since 1985,
PCs memories have become 100

What is COMMON LISP AND CLOS?

C
ommon Lisp (CL) is a consolidation
of the many dialects of Lisp (a
programming language created over

40 years ago by John McCarthy at MIT)
— the first ANSI standard object
oriented programming language.
Unlike its aging contemporaries
COBOL and FORTRAN, Lisp is
entering its prime. PC hardware is now
ready for Lisp, which stays young by
continually absorbing new ideas and
evolving to meet the needs of its users.

Object oriented programming
entered Lisp in the early 1980’s. CLOS,
the Common Lisp Object System, was
designed to combine and improve on
the ideas from these early systems. It is
CLOS, which earned an ANSI
Standardization, that makes Common
Lisp object oriented. Although there are
applications written in Common Lisp,
which do not use CLOS, it is the newest
development in Lisp. CLOS made a
radical advance on other object systems,
and influenced later languages, notably
Java. Yet CL/CLOS is still a leader in
expressive power and flexibility, and it
remains one of the most powerful
mainstream object oriented languages
available today.

Who uses CL/CLOS?
CL/CLOS stands out in its ability

to solve complex problems or where
requirements change rapidly.

times larger. Office applications are
now 20 times larger. CLOS
implementations are actually smaller
than many other office applications.

Benefits of CL/CLOS
There are benefits throughout the

development lifecycle from design, to
coding, to testing and finally to end user
execution. Many of these stem from its
extreme flexibility. Rather than forcing a
particular style of programming,
CL/CLOS integrates object, metaobject,
imperative, pure functional
programming, higher order functions,
and embedded domain specific
languages. Problems are solved in the
most appropriate.

Design
The expressive power of CLOS

allows the design to be concise and
simple. Its flexibility allows a close
match to the problem, without being
distorted to fit the limits of the
programming language. With
CL/CLOS macros (embedded domain
specific language) programs can be
written in terms of the problem domain.
CLOS metaobjects enable the extension
of the object system — objects become
their own data dictionary. Persistence,
constraint propagation, and transactions
can be added.

CLOS classes are reusable through
multiple inheritance and the

CLOS - A Perspective
The Common Lisp Object System

By Richard Barber

Lisp in the Web
SchemaText, Web Authoring
Technology (Schema GmbH)

SchemaText, an application designed
by Schema GmbH, manages very large
web documents including technical and
legal documents, online help systems and
product catalogues for Internet and
Intranet sites. CLOS was chosen because
of its high level of functionality and
problem-solving capability. The runtime
type dispatch enabled the collection of
various data types while preserving the
integrity of the object. The CLOS
implementation enables SchemaText to
revise a design to fundamental levels
without compromising the data.
Accommodating special customer
requirements was also simplified. Visit:
www.schema.de

Lisp in Risk Analysis
Fault Tree Analysis with FaultrEASE
(Arthur D. Little, Inc.)

FaultrEASE, a large-scale fault tree
analysis application, allows users to
perform quantitative risk assessment

operations dynamically. Fault tree analysis
is a technique used to assess the
likelihood of a given event. A fault tree is
a model that graphically displays all
possible faults leading to a given event. It
is used by many industries: chemical,
nuclear, transportation (automotive,
aviation, and rail), pharmaceutical, and
insurance. It is also used in the medical
device industry (heart pacemakers,
respirators, etc.) because the FDA
requires risk analysis documentation for
these items. With FaultrEASE, you create
and build fault trees graphically. Editing
is also done graphically, and it is very
quick since you can operate on whole
branches at a time. After quantifying
your tree, you can calculate statistics and
cut sets. You don’t need to know or do
quantitative risk assessments; the
program performs them in real time.
CLOS was used in developing three
critical portions of the application: the
placement algorithm, which enables
dynamic fault tree layout; the graphical
user interface; and the mathematical
component (direct evaluation). Visit:
www.process-safety.com

Real World Applications of CL/CLOS

“anonymous” next method — calling
the method defined on the superclass
without the need to specify its class.
Attaching methods to several classes at
once provides CLOS programs the
flavor of logic programming or pattern
matching. Higher order functions and
closures can encapsulate complex
control flow. Runtime code construction
and compilation allow scripting
languages without writing interpreters.
Runtime typing and a comprehensive
type system allows full polymorphism.

Coding
CL/CLOS speeds coding, whether

by teams or individual. Application
development is interactive even when
working with compiled code. A running
program can be modified during a
debug section and the change
immediately tested. A class can be
redefined without recompiling other
parts of the system — and without other
team members rebuilding or
recompiling their code, either. Methods

Further Information on CLOS
Object-Oriented Programming: The CLOS Perspective by Andreas Paepcke, MIT

Press, 1993. 400 pages, ISBN 0-262-16136-2
Understanding Clos : The Common Lisp Object System by Jo A. Lawless, Molly M.

Miller, Digital Press, 1991. 193 pages 5-5558-064-5
Some references on LISP and CLOS include:
http://www.apl.jhu.edu/~hall/lisp.html
http://www.franz.com

are added to a class without accessing or
modifying its source definition.
Namespaces (“packages”) ensure team
development without the danger of
name clashes.

Testing
By removing the need to write

elaborate test harnesses for each unit,
CL/CLOS potentially lowers the cost of
unit testing. In addition, tests can be
scripted directly in CL/CLOS. Traps can
be safely performed along with the
analysis of any runtime exceptions
including those caused by testing. Since
complex data structures (such as trees

and array) are read and saved as text,
coding the test data structures and
expected results aren’t needed.

Execution
Runtime type checking and

automatic memory management prevent
programs from crashing. Any unexpected
exceptions that do occur are reported in
English, not in hex, and usually do not
cripple the application. Since it’s possible
to modify a program when running,
upgrades and enhancements can be made
in the field.

CLOS and Object Oriented
Development

CLOS is compatible with other
standard object oriented design
methodologies and tools. Component-
based development is supported either
through writing COM or CORBA
components in CLOS, or by calling
components from CLOS.

By providing the “smart” portion of
the solution, CLOS may directly solve
the hard part of the problem, or may
orchestrate other components. This
leverages existing investment in software
and development skills.

Fifteen years ago, PC applications
were small and relatively simple, and
CL/CLOS would have overloaded the
many computers, especially PCs. Today,
applications are large and complex. With
their pace of change accelerating,
developers battle to keep up. Even PCs
easily run CL/CLOS and CL/CLOS
based applications, so its power is now
ready to be exploited.

Richard Barber is a consultant in the fields of object-
oriented development, software engineering, and
business development. Founder and CEO of Procyon
Research Ltd, he developed the first commercial
implementation of CLOS. Richard researched medical
expert systems at Cambridge University, and has
degrees in Computer Science and Physics from
Cambridge. He can be emailed at:
richard@jsb1.freeserve.co.uk.

