Allegro CL version 10.0
Unrevised from 9.0 to 10.0.
9.0 version

Regular Expression API

This document contains the following sections:

1.0 Regular Expression handling in Allegro CL
2.0 The regexp2 module
   2.1 Matching mode in the regexp2 module
   2.2 Regular expression syntax summary
   2.3 Capturing and back reference
   2.4 Regexp trees
   2.5 User-level API in the regexp2 module
   2.6 Compatibility issues in the regexp2 module
   2.7 Performance notes in the regexp2 module

1.0 Regular Expression handling in Allegro CL

In the regexp2 module, the functions are named by symbols in the excl package, and are named compile-re, match-re, split-re, and replace-re. (There is also an older regexp module which is maintained for backward compatibility but no longer discussed in this document.)

2.0 The regexp2 module

The regexp2 module provides a fast, mostly-Perl-compatible regular expression matcher. It handles Unicode character set (UCS-2). Symbols in the regexp2 module are in the excl package.

You load the regexp2 module with the form

(require :regexp2)

2.1 Matching mode in the regexp2 module

Like Perl, there are four types of 'mode switches' that affect the meaning of regular expressions. The switch can be specified by the keyword arguments passed to regexp APIs, or by embedding 'flags' in the regular expression itself. The following table lists the valid mode switches.

Flag Keyword argument Descrption (when 'on')
i :case-fold Case-insensitive match (when true). Currently, case folding is only effective for ASCII characters.
m :multiple-lines Treats the input string as multiple lines. If turned on, "^" and "$" matches the start and end of any line instead of the beginning and end of the whole string.
s :single-line Treats the input string as a single line. If turned on, "." matches any character, even a newline. Normally "." matches any character except a newline.
x :ignore-whitespace Extend syntax. Whitespace in the regular expression is ignored, and comments can be inserted, to increase legibility of the regular expression.

Within a regular expression, a mode switch can be turned on/off locally by (?:...) construct. For example, (?i:foo) makes foo match case insensitively. (?-i:foo) makes foo match case sensitively. You can combine multiple flags, like (?im-sx:foo). A construct like (?i) changes the mode switch until the end of the current grouping.

2.2 Regular expression syntax summary

You must double backslashes in strings

The backslash character is treated by the Lisp reader as an escape character, telling the reader to treat the next character as a literal rather than some sort of a control charcater. Thus, suppose you want to make a string of


You want the double quote character to be part of the string, but the reader will misunderstand


so you specify it as


When those 8 characters are read, a 5 character string will be stored, with no backslash and the double quote as the third character:

cl-user(4): (setq str "ab\"cd")
cl-user(5): (length str)
cl-user(6): (char str 2)
#\"  ;; note " not \

Backslashes are used extensively in regular expressions. In order to specify a backslash in a string, you enter two backslashes (the first is read as an escape and the second as the character (a backslash) which you want to include. So

cl-user(7): "\|"
cl-user(8): "\\|"
cl-user(9): (length *)
cl-user(10): (split-re "\\|" "this|is|a|string")
("this" "is" "a" "string")

;; "\|" matches the empty string so the result is the letters as strings:

cl-user(11): (split-re "\|" "this|is|a|string")
("t" "h" "i" "s" "|" "i" "s" "|" "a" "|" "s" "t" "r" "i" "n" "g")

;; More examples with tabs (\t):

cl-user(12): (split-re "\\t" "this	is	a	string	with	tabs")
("this" "is" "a" "string" "with" "tabs")
cl-user(13): (split-re "\\x09" "this	is	a	string	with	tabs")
("this" "is" "a" "string" "with" "tabs")


Construct Matches
x The character x
\\ A backslash character
\0 #\null
\0n (<= 0 n 7) A character x where (= (char-code x) #on)
\0nn (<= 0 n 7) A character x where (= (char-code x) #onn)
\nn (<= 0 n 7) A character x where (= (char-code x) #onn), if this cannot be a back-reference
\mnn (<= 0 m 3) (<= 0 n 7) A character x where (= (char-code x) #omnn)
\xhh A character x where (= (char-code x) #xhh)
\xh A character x where (= (char-code x) #xh) if at the end of regexp or followed by non-hexdigit char.
\x{h...} A character x where (= (char-code x) #xh...).
\a #\bell
\e #\esc
\f #\form
\t #\tab
\n #\linefeed
\r #\return
\cx control character corresponding to x (e.g. \cG for #\bell).

Predefined character classes

Construct Matches
. any character except newline (if 's' flag is on, matches any character including newline).
\d A digit character [0-9]
\D A non-digit character [^0-9]
\s A whitespace character [ \n\r\t\f] (that is, #\space, #\newline, #\return, #\tab, and #\formfeed).
\S A non-whitespace character [^ \n\r\t\f]
\w A word-constituent character. Currently, alphanumeric characters, #\_, and any character whose code is larger than 128 is considered as a word constituent character. The treatment of large character set may be improved in the later versions.
\W A non-word-constituent character

Character classes

Construct Matches
[abc] a, b, or c
[^abc] any character except a, b, or c
[a-zA-Z] character range (a through z or A through Z)
\n, \nn, \mnn, \x, \xh, \xhh, \x{h..} \\, \a, \e, \f, \t, \n, \r, \cx Octal and hexadecimal character notation, and the above single character escape, are valid in character class as well.
other \d, \D, \s, \S, \w, and \W can also be used within character class notation, e.g. [abc\d] == [abc0-9].


Construct Matches
^ Beginning of a string. (if 'm' flag is on, matches at the beginning of a string or just after a linefeed).
$ End of a string. (if 'm' flag is on, matches at the end of a string or just before a linefeed).
\b A word boundary.
\B A non word boundary.
\A Beginning of a string.
\Z End of a string, or before linefeed at the end.
\z End of a string.

Greedy repetition

Construct Matches
X? Zero or one occurrence of X
X* Zero or more occurrence of X
X+ One or more occurrence of X
X{n} n times of X
X{n,} n times or more repetition of X
X{n,m} between n and m times of repetition of X

Non-greedy repetition

Construct Matches
X?? Zero or one occurrence of X
X*? Zero or more occurrences of X
X+? One or more occurrences of X
X{n}? n times of X
X{n,}? n times or more repetition of X
X{n,m}? between n and m times of repetition of X

Logical operators

Construct Matches
XY X followed by Y
X|Y X or Y

Grouping and special constructs

See Section 2.3 Capturing and back reference below for the operation of capturing and reference.

Construct Matches
(X) Groups X, and captures submatch.
(?<name>X) Groups X, and captures submatch, assigning name as the name of the submatch. Name must consist of a sequence of word-constituent characters.
(?:X) Groups X, but does no captures.
(?imsx-imsx:X) Groups X, with turning on/off the given flags.
(?imsx-imsx) Successfully matches nothing, and changes the given flags within the current group.
(?=X) Zero-width positive look-ahead
(?!X) Zero-width negative look-ahead
(?<=X) Zero-width positive look-behind
(?<!X) Zero-width negative look-behind
(?>X) Matches X, and never backtrack. (also known as "standalone" group)
(?(n)Y) If submatch N has a value, match Y.
(?(n)Y|Z) If submatch X has a value, match Y; otherwise match Z.
Try the look-ahead or look-behind assertion of X, and if succeeds, match Y; otherwise match Z. '|Z' part can be omitted.

Back reference

Construct Matches
\n Matches the n-th submatch (n>=1). If n-th submatch doesn't have a value, it doesn't match anything (match just fails). If n is more than one digit, it becomes a back reference only if there are that many capturing groups in the regular expressions; otherwise, it is interpreted as an octal character notation if possible.
\k<name> Matches the submatch with name. If there are more than one submatches that has the name, this tries to match the one that has the biggest number first, and if it fails, the smaller numbered submatches are tried.

2.3 Capturing and back reference

Capturing submatches (X) and (?<name>X) are numbered in the order of its opening parenthesis from left to right. Named submatch is counted the same as unnamed submatch, and can be back-referenced by both name and number.

When the input string matches X, the portion of the input string is saved. It can be referenced within a regular expression, by the back reference construct, or can be returned to the user program as a submatch.

If the capturing construct matches more than once, it saves the last match.

2.4 Regexp trees

Most functions that accept a regexp string such as match-re and compile-re also accept a regexp tree. A regexp tree is an s-expression with the syntax described below. The syntax was defined by CL-PPCRE and is intended to be compatible with it. This documentation was taken from the CL-PPCRE documentation, available as

Programmers are usually most familiar with regexp string syntax, and it suffices for many normal regexp applications. However, string syntax does not scale very well -- complex regexps are hard to write and even harder to parse. The frequent need for backslach escapes is a further complication. In such cases, programmers may find tree syntax easiler to code in Lisp source code editors with their autmatic indentation and parentheses matching.

Further, in any application that generates regular expressions on the fly will undoubtedly find it easier to generate s-expr tress than trying to perform and extra level of encoding into string syntax, only to force the regexp system immediately to parse the string back.

Tree syntax is as follows:

There is a small region of ambiguity between string syntax and tree syntax. Although a single string is a valid parse tree, it will be interpreted as a Perl regexp strings when given to compile-re and friends. To circumvent this you can use the equivalent parse tree (:GROUP <string>). See also quote-re.

If you want to find out how parse trees are related to Perl regex strings you should play around with parse-re - a function which converts a Perl regexp strings to a parse tree.

2.5 User-level API in the regexp2 module

There are seven functions (listed first) and three macros in the API:

2.6 Compatibility issues in the regexp2 module

  1. Traditionally, '{' and '}' characters that do not consist of a valid repetition syntax are taken literally. That is, a regular expression "x{1,3,4}" matches the string "x{1,3,4}", and a regular expression "a{" matches the string "a{". Currently, these regular expressions raise a syntax error in our regexp library.
  2. Embedded Perl expressions like (?{ $a = 3+$b }) are not supported because Lisp cannot execute Perl code.
  3. The following escape sequences are not supported. Precisely speaking, these are actually a feature of Perl's literal string syntax, and not a part of regular expression.
      \N{name}   named char
      \lx        lowercase x
      \ux        uppercase x
      \Lx..\E    lowercase x..
      \Ux..\E    uppercase x..
      \Qx..\E    quote non-alphanumeric chars in x.
  4. The character properties (\p{property} and \P{property}), and extended unicode combining sequence \X, aren't supported.
  5. POSIX character class syntax [:class:] within character classes is not supported.
  6. Inconsistent capturing and alternation order. This is due to Perl's bug. Only appears in the mixture of very tricky situation and optimization. See for the details.

2.7 Performance notes in the regexp2 module

Theoretically ACL's regexp library uses the same mechanism that Perl and CL-PPCRE are using: Nondeterministic finite automaton (NFA). When there are multiple possibilies of matching, it "remembers" the current state and tries each possibility one at a time. If a trial fails, it backs up the last saved state and tries the next possibility; that is called a "backtrack". It is possible to compose a very short regular expression that does a huge number of backtracks; if you have nested repetitions and alternations, the number of required backtracks grows exponentially.

The regexp optimizer tries to reduce the number of backtracks, but it is not always possible. Here are some tips to improve the performance of the matcher.

Copyright (c) 1998-2015, Franz Inc. Oakland, CA., USA. All rights reserved.
Documentation for Allegro CL version 10.0. This page was not revised from the 9.0 page.
Created 2015.5.21.

Allegro CL version 10.0
Unrevised from 9.0 to 10.0.
9.0 version