
AllegroCache
Reference Manual

Franz Inc.

version 3.1.4



AllegroCache 3.1.0 2

Table of Contents
Introduction..........................................................................................................................3
Package................................................................................................................................3
Creating persistent objects...................................................................................................3
Indexes.................................................................................................................................5
Maps.....................................................................................................................................5
Sets.......................................................................................................................................6
Transactions.........................................................................................................................7

Standalone Mode.............................................................................................................7
Client-Server Mode.........................................................................................................8
Rollback to go Forward...................................................................................................9

Database.............................................................................................................................10
Object Identifiers................................................................................................................10
Configuration: Standalone.................................................................................................11
Configuration: client/server...............................................................................................11
The API..............................................................................................................................11

Standalone Configuration..............................................................................................11
Client Server Configuration..........................................................................................14
Both Configurations......................................................................................................17
Summary of Operations.................................................................................................17
Object Deletion.............................................................................................................18
Iteration.........................................................................................................................20
Class Cursors.................................................................................................................20
Maps..............................................................................................................................20
Map Cursors..................................................................................................................24
Sets................................................................................................................................27
Indexes..........................................................................................................................27
Index Cursors................................................................................................................31
Expression Cursors........................................................................................................34
Compressed Indexes......................................................................................................39
Transactions...................................................................................................................40
Saving and Restoring Databases...................................................................................43
Transaction Logs...........................................................................................................44

Database Recovery from Log Files..........................................................................44
Compressing Log Files.............................................................................................45

Miscellaneous................................................................................................................46
Where the Illusion Breaks Down..................................................................................51
Upgrading Databases.....................................................................................................51

AllegroCache versions 1.1.0 to 2.0.1........................................................................51
AllegroCache version 2.1.0......................................................................................52

Lisp Multiprocessing..........................................................................................................52
Bulk Loading......................................................................................................................53
AllegroCache Utilities.......................................................................................................59



AllegroCache 3.1.0 3

defclass*/defprinter.......................................................................................................59

Introduction
AllegroCache is a persistent object store.  AllegroCache supports transactions and works 
either single-user with a file on the local machine or over the network in a client-server 
mode.

Package

The package holding AllegroCache symbols is  "db.allegrocache" with the nickname 
"db.ac".     For those running lisp in ANSI mode the packages names are naturally in all 
upper case.

Creating persistent objects

To create persistent objects first define a class with the metaclass  persistent-class:

    (defclass foo () 
    ((next :initform nil)
     (val :initarg :val :accessor foo-val))
    (:metaclass persistent-class))

When make-instance is called a persistent object will be created.  

    (make-instance 'foo :val 12345)

This make-instance call can only be done when a connection to a database is open (and 
the object representing that connection is stored in the global symbol *allegrocache*.   
The  object just created will not be written to the database until the  commit function is 
called.

A persistent clos object operates  just like a normal clos object except that the slots of the 
object can only store lisp objects that can be stored in a database.  A list of what can be 
stored is given in Table 1.



AllegroCache 3.1.0 4

Data type Notes

symbol Symbols are stored along with their package.  

number Integers and floating point numbers.   

string Unicode characters are supported

character Unicode characters are supported

cons Proper and dotted lists of persistent values are also persistent

vector Simple vectors of type t (containing objects of any type listed in this 
table) are persistent.    Simple vectors of (unsigned-byte 8) are also 
persistent.

object A reference to a persistent clos object in the same database can be 
store.   A non-persistent clos object can be stored if an encode-object 
method is defined to tell AllegroCache how to store it.

map A map object (either ac-map or ac-map-range)

set A set object (of class ac-set)

structure Objects defined by defstruct can be stored only if an encode-object 
method is defined to tell AllegroCache how to store the object.

Table 1 Persistent Values

The normal clos operations are used for storing and retrieving persistent values.

storing persistent values:
    (setf (slot-value x 'next) "none")
    (setf (foo-val x) 1234)

retrieving persistent values:
    (slot-value x 'next)
    (foo-val  x)

    The metaclass persistent-class introduces a new slot allocation type :persistent and 
makes :persistent the default allocation type (instead of :instance).    If  you wish your 
persistent objects to have class or non-persistent instance allocated slots you can use the
:class or :instance allocation types respectively:



AllegroCache 3.1.0 5

       (defclass foo ()
         ((next :initform nil)
          (val :initarg :val)
          (nonpersistent :allocation :instance)
          (classalloc    :allocation :class))

    (:metaclass persistent-class))

Indexes

  An index is a function associated with a slot S of a persistent class that if given a value 
X returns all persistent objects that have the value X in slot S.

 You can specify that an index function can be created by the :index slot specifier:

       (defclass foo () 
    ((val :initarg :val :index :any)

          (bar :initarg :bar :index :any-unique))
    (:metaclass persistent-class))

 the value of the :index slot specifier can be one of:

:any this slot can take on any value and the same value can 
appear in this slot in more than one object of this class

 :any-unique this slot can take on any value and the same value will 
not appear in this slot in more than  one object of this 
class.

 If the :index slot specifier is added to the class after the class is used to create a database,
then AllegroCache will create the index and populate it with information for existing 
instances in the database at the time of class redefinition.

 Beginning in version 1.0.2 a violation of uniqueness causes an error to be signaled at commit time.     
Due to the overhead of  checking for uniqueness using an index type of  :any will give you  the fastest 
results.

Maps



AllegroCache 3.1.0 6

  A map is a table that persistently stores key and value pairs.   A map may be named so 
that can be retrieved by name.

cl-user(3): (setq m (make-instance 'ac-map 
                       :ac-map-name "mymap"))
#<ac-map oid: 13, ver 1, trans: nil,  modified @ #x71d7c952>
cl-user(4): (dotimes (i 10) (setf (map-value m i) (* i i)))
nil
cl-user(5): (map-value m 3)
9
t
cl-user(6): 

    

Sets
A set is a persistent collection of objects no two of which are equal (in the sense of the 
Lisp predicate equal).    You can add values to a set and remove them and you can iterate 
over the values.    If you're only storing a few objects in a set then you would be better off 
just using a Lisp list to store the values.  If however you may store many objects in the set
then the special set data type is more efficient.

cl-user(4): (setq s (make-instance 'ac-set))
#<ac-set oid: 13, trans: nil,  modified @ #x71cd8422>
cl-user(5): (add-to-set s 10)
10
cl-user(6): (add-to-set s 'foo)
foo
cl-user(7): (doset (obj s) (print obj))

10 
foo 
nil
cl-user(8): (remove-from-set s 10)
10
cl-user(9): (doset (obj s) (print obj))

foo 
nil
cl-user(10): 



AllegroCache 3.1.0 7

Transactions
The AllegroCache transaction model is designed to be familiar to relational database 
users as well as permitting high performance object database operations.

AllegroCache can be run in standalone  or client-server mode.    In standalone mode the 
transaction model is very simple to understand.  In client-server mode the model is harder
to understand but this is to be expected as much more of the transaction features come 
into play when there are multiple clients operating on the same database.    It’s important 
to understand though that the actual AllegroCache    transaction model is the same for 
standalone and client-server modes.
 
We’ll first describe how transactions work in standalone mode.

Standalone Mode

The key feature of transactions in standalone mode is atomicity.   This means that all 
changes made during a transaction are made to the database or none of them are.    If you 
call commit then all changes are stored in the database.  If you call rollback or just close 
the database with close-database then none of the changes in this transaction are made to
the database.

The figure below shows what happens after two commits.  Initially the database is in state
1.   A commit brings it to state 2 and a second commit brings it to state 3.    The red arrow
indicates changes made to the database but not yet committed.  

At this point the client program can commit and create a state 4 or rollback and remove 
all the changes indicated by the red arrow and return to an unmodified state 3 and then 
begin making a new set of changes.

When using standalone mode only one thread at a time can be accessing the database.  
Since simply CLOS operations like slot-value can invoke database functionality you have
to be extremely careful if you have a multi-threaded program and you're using an 
AllegroCache database.    With SMP it's even more tempting to use multiple threads to 
solve problems.    You should seriously consider using client-server mode if you want 
your application to have multiple threads each communcating with an AllegroCache 
database.

1 2 3



AllegroCache 3.1.0 8

Client-Server Mode

A second key transaction feature that comes into play only in client-server mode is 
isolation.   A client connecting to the database wants to see only its changes while it’s 
operating on the database.  At certain points when it’s appropriate the client will want to 
save or flush its changes and then the client will want to see what other clients have been 
doing to the database.

Let’s begin by assuming that one client has connected to the database server and has done
one commit.  The database is in state 2 and the client has made some local changes 
shown by the red arrow.

Now a second client connects to the database.  It sees the database at the most recent 
committed state (state 2 in our example).   This new client starts to make changes and 
we’ll indicate those with a green arrow.

The changes that the Red client makes are not seen by the Green client and vice-versa.

Now suppose the Green client calls commit and that commit succeeds.  The result is:

The database on disk has moved to state 3 and the Green client is now making changes 
based on state 3.
The Red client is still making changes based on state 2.  It hasn’t seen any of the changes 
made by the Green client.    The Green client has not seen any of the changes made by the
Red client either.

1 2

red

1 2

red

1 2 3

red



AllegroCache 3.1.0 9

Let’s now examine the two possible next steps for Red in our scenario.

Suppose the Red client decides that it doesn’t want to keep the changes it has made  to the
database and thus calls rollback.   All the changes Red has made to objects during the 
transaction are undone and Red’s view of the database is advanced to the latest state of 
the database:

The reason that the Red advances to view the latest state of the database is that most of 
the time a rollback is done is because a commit failed and in order to fix a failing commit 
the best strategy is to advance to the most recent database state and redo the changes and 
try the the commit again.
[In the future we may allow a user to specify an option to rollback to prevent it from 
advancing to the latest state].

Suppose instead of a rollback Red had called commit.    AllegroCache would check to 
see if any of the objects Red had modified had been modified by some other client (e.g. 
Green) since state 2.  If so then the commit would fail.  If not then the Red changes are 
made to the database and the result is a new state 4 which only Red sees.   Green is still 
making changes to state 3.

Rollback to go Forward

In the client-server mode you may have a client connected to the database whose only job 
is to monitor the database for certain events being present and then act on those events.   
You’ve seen above that if a client connects to the database it will see the latest state of the
database at the time the connection is made but it will never see the database change.    
This is not what the monitoring process wants.  It periodically wants to see the latest state
of the database.   The only way to advance to the latest state is to abandon any changes it 

1 2 3

red

1 2 3 4

red



AllegroCache 3.1.0 10

may have made during this transaction and this is done using the rollback function.    
Thus the monitor program will be written this way:

(loop
  (rollback)
  (if* (work-for-us-to-do)
     then (do-work))
  (sleep 60) ; sleep for a minute
  )

  
If the do-work function referenced above makes changes to the database then it must call 
commit so that they aren’t lost when rollback is called at the top of the loop.    When 
calling commit it’s a good idea to wrap all database operations and the commit in a call 
to with-transaction-restart.  Then, if the commit fails a rollback will be done and the 
database changes will be done again followed by a commit.

(defun do-work ()
  (with-transaction-restart (:message "doing work")
    (do-the-actual-work)
    (commit)))

Database

 Logically a database is a collection of persistent class definitions, instances of those 
classes, index tables for some of the slots of the persistent classes and finally named 
maps.

Physically a database is a directory containing a set of files, each file holding a single B-
Tree.   A B-Tree is a data structure that maps keys to values and sorts the key-value pairs 
by the key.

Object Identifiers

 In a database every object has a unique object identifier (oid).   This value can be 
retrieved using db-object-oid. An oid is an integer.  There is no way to determine the 
class of an object given its oid. 



AllegroCache 3.1.0 11

 Usually a program need not concern itself with oids.  However in certain circumstances it
may be convenient to work with oids.  One such case is when combining the results of 
multiple indexes over the same class.  You may want to ask for the set of objects whose X
slot is greater than 10 and whose Y slot is greater than 20.  It consumes fewer resources to
ask for the oids of objects whose X slot is greater than 10 than to ask for the objects 
themselves.  In the later case the objects retrieved have to be instantiated in the object 
cache and there's no point in doing that if you don't need all those objects.  In this case 
you don't need all those objects since you only need those objects  whose Y slot is also 
greater then 20.  Thus the optimal way to do this query is to find the intersection of the 
oids corresponding to "X > 10" and those oids with "Y > 20" and then from that 
intersection find the objects corresponding to the oids.

Configuration: Standalone

 In the standalone configuration of AllegroCache, Lisp operates directly on the B-Tree  
files which should be stored on a directory on a local filesystem.   This gives you the 
maximum performance.   In standalone mode a commit can never fail.

Configuration: client/server

 In this configuration you first start an AllegroCache server on one machine and have it 
open a B-Tree database on a local disk.   Next you can have any number of AllegroCache 
client programs connect to this server process.  Each client has an independent object 
cache.  The server also has a cache of the blocks in the B-Trees.

The API

Standalone Configuration

open-file-database (local-directory
                     &key if-exists
                          if-does-not-exist
                          (use :db)



AllegroCache 3.1.0 12

                          (verify t)
                          class-cache-size
                          object-cache-size
                          log-size
                          read-only
                          max-fds
                          max-logs-open)

This function creates or opens an existing database on a local disk.   It will open 
databases on remote mounted disks but you may run into performance problems when 
using disks on another machine.

local-directory a string or pathname naming a directory (which may or may 
not yet exist)

if-exists Specifies what to do if the database already exists:

● :open (the default value) - open the existing database
●  :supersede - destroy the existing database and create a

new one
● :error - signal an error

if-does-not-exist Specifies what to do if the database does not exist:

● :error (the default value) - signal an error
● :create  - create a new database

use Specifies which class definition should take precedent if a 
class is defined in both the database and Lisp memory

● :db – the definition in the database will overwrite the 
definition in memory.  This is the default

● :memory – the definition in memory will be used
verify ● Specifies how extensively AllegroCache should verify

the database on startup.   Valid arguments are

● nil – don't verify at all

● :quick – verify that the last few log entries are valid, 
and if they aren't do a full scan of the whole last log 
file

● t – do a full scan of the last log file truncating it at the 
point the log file is found to be corrupt.   This is the 
default value used a :verify argument is not given.

● :full – do a full scan of the last log file and also scan 



AllegroCache 3.1.0 13

all btrees.  If the btrees are invalid signal an error.
class-cache-size The number of bytes in the page cache for each B-Tree used 

to store the data.    If you're building a huge database and your
machine has a lot of physical memory then specifying a large 
cache will improve performance.  The default is to not put a 
limit on the size of the class cache.

object-cache-size Specifies the maximum number of objects of each class to 
store in the local object cache.  There is one object cache per 
persistent class.   When the number of objects in the cache 
exceeds this size some objects are evicted but this eviction 
will only occur if there are no references to this object from 
the heap.  The default value for this parameter is 70,000.

log-size the size to which a transaction log file can grow before 
AllegroCache will close it and create a new log file.   The 
default value is 200 MB.

read-only The files in the database will be opened for reading only.  
This will allow you to open a database for which you don't 
have write permission.  Commits are not permitted and will 
signal an error.

max-fds The maximum number of files descriptors that AllegroCache 
is allowed to use for its index files.    If you are creating many
indexes or ac-map objects then you may run out of file 
descriptors provided by the operating system (especially on 
Mac OS X which provides very few).   Specifying a value 
here will cause AllegroCache to avoid keeping too many  
index files open at the same time.

max-logs-open The maximum number of log files that can be open at a time.  
After this number is reached AllegroCache will close log files
that weren't used recently and will open them again upon 
demand.   If this number is much smaller than the actual 
number of log files in the database and AllegroCache is 
forced to close and re-open the log files then there will be a 
performance degredation

open-file-database returns a database object and sets *allegrocache* to that database 
object thus making this database the default database for many of the AllegroCache 
functions.



AllegroCache 3.1.0 14

create-file-database (local-directory
                     &key (verify t)
                          class-cache-size
                          object-cache-size
                          log-size
                          max-fds)

This function calls open-file-database with the arguments:
  :if-exists :supersede  :if-does-not-exist :create
thus always causing a new database to be created.  

Client Server Configuration

  

start-server (local-directory port 
                                    &key if-exists
                    if-does-not-exist
                    (verify t)
                    class-cache-size
                    authenticate
                    rsa-keys
                    log-size
                    address
                    max-fds
                    max-logs-open
                    read-only
                    )
 
start-server creates a network server for the given database on the given port.   Some 
arguments to start-server are the same as open-file-database.    Thus you can open an 
existing database or create a new one.

If the port argument is nil then the operating system will chose a free port.  You can 
determine which port it chose by calling netdb-port on the return value from start-
server.

We may support unix domain sockets in the future. 

If the authenticate argument is non-nil then clients connecting to the server (using open-
network-database) must authenticate themselves before they can do database operations.  
The value of authenticate is either a list of names and passwords, such as 

((“joe” “mypass”)  (“john”  “beem”) (“sally” “wolf”))



AllegroCache 3.1.0 15

or is a function of one argument which will do the authentication.  The function will be 
passed a list whose first element is the given user name and whose second element is the 
password and the function should return non-nil if the given user name and password are 
correct.

If authenticate is given then AllegroCache will compute a pair of RSA keys to be used 
for secure transmission of the user name and password by the client.  This generation 
process can take 30 seconds on a fast computer.   This key generation will only happen 
once (not for every client connection).

To bypass the generation of the RSA keys you can pass the keys in yourself using the rsa-
keys argument.  The value of the rsa-keys argument should be a list of two elements, a 
public key and a private key, such as returned by the generate-rsa-keys function in 
Allegro Common Lisp.

Specifying a value for authenticate will allow the client to create a connection to the 
server in which all data sent over the network is encrypted .  This is done with the :secure
t argument to open-network-database.

The log-size argument specifies the size to which the  transaction log can grow before the 
log is closed and a new log started.   The default is 20MB.

The address argument specifies the desired network interface on which to listen.  If not 
specified, then the server will listen on all interfaces.  A typical non-nil value for this 
keyword is “127.1” to limit connections from the local machine, or loopback interface.

The max-fds and max-logs-open arguments are described in the documentation for 
open-file-database.

If the read-only argument is true then the database is opened in read only mode and no 
commits allowed.   When a client connects to the database it will then be told that the 
database is read only and commits won't be allowed.   One important reason to open a 
server database read-only is to cause compressed indexes to be used if they are present.

start-server returns a netdb object which can be passed to stop-server in order to shut 
down this server



AllegroCache 3.1.0 16

open-network-database (hostname port 
                         &key (use :db)
                              user password
                              secure
                              object-cache-size)

opens a connection to a database server on the network on the host specified by  
hostname and given port.  The server must already be running.

The use argument specifies what to do if a class is defined in both the database and in 
Lisp memory.   By default the definition in the database takes precedence.  If :memory is 
specified then the definition in memory is used. 

If the server was started with authentication enabled then you can pass values for user  
and password as well and these will be used in the authentication protocol.  The server 
side authentication function is free to use or ignore the supplied user and password 
values.  Failure to authenticate will result in an error being signaled.

If secure is :aes or :blowfish then the client is requesting a connection to the server in 
which the data transferred over the network is encrypted using the specified algorithm.  If 
some other non-nil value is given then :blowfish is assumed (for backward compability). 
Note that the data will not also be encrypted in Lisp's memory or in the database file on 
the disk.

object-cache-size is the maximum number of objects that should be stored in the object 
cache (although the cache will always expand if has to to hold all modified and not 
committed objects).   The default value is 70,000.

open-network-database returns a database object and sets *allegrocache* to that 
database object, thus making it the default database for many of the database functions.

stop-server (netdb)

shuts down the server and closes the associated database.   The netdb object is what was 
returned by start-server.

netdb-port  (netdb)

returns the port number on which this network database server is listening for 
connections.   The netdb object is what was returned by start-server.

There are other functions for the client server configuration documented in the 
Miscellaneous section below.   The functions include  client-connections, kill-client-
connection and connection-alive-p.



AllegroCache 3.1.0 17

Both Configurations

close-database (&key (db *allegrocache*) stop-server)

close the database connection given.  Note that a commit will not be done automatically 
before the close.  If you want your changes committed you must call commit before close-
database.

If stop-server is non-nil then if  this is a client database connection then the server will be
shut down after the database connection is closed.   The shutdown will be delayed until 
there are no commits in progress from other clients.

database-open-p (db)
returns true if the given database object has not been closed.

Summary of Operations

objects
make-instance
slot-value
(setf slot-value)
database-of
delete-instance
deleted-instance-p
db-object-oid
oid-to-object
oid-to-object*
mark-instance-modified

classes
doclass
doclass*
delete-persistent-class
create-class-cursor
next-class-cursor
free-class-cursor



AllegroCache 3.1.0 18

maps
map-value
(setf map-value)
remove-from-map
map-map
create-map-cursor
next-map-cursor
previous-map-cursor
free-map-cursor
retrieve-from-map-range

sets
add-to-set
remove-from-set
set-member
set-count
doset

indexes
retrieve-from-index
retrieve-from-index*
retrieve-from-index-range
index-count
create-index-cursor
create-expression-cursor
next-index-cursor
previous-index-cursor
free-index-cursor

Object Deletion

delete-instance (object)

deletes the object from the database.    Attempts to read or write the object will signal an 
error after the object is deleted.    If rollback is called before commit the object will no 
longer be deleted.

Even after an object is deleted it remains in Lisp's memory until there are no more 
references to it.   The object is marked as deleted and you can use deleted-instance-p to 
test if a given object has been deleted.   It's the program's responsibility to ensure that 
objects it encounters when  traversing persistent values are not deleted before accessing 
them.  

Once the deleted object is garbage collected out of Lisp's memory any future persistent 



AllegroCache 3.1.0 19

values that are read from the database that contain a reference to the deleted object will 
have that reference replaced by nil.

deleted-instance-p (object)
returns true if the given object is a deleted persistent instance.

;; create an instance, set a slot and verify that it was set.
cl-user(20): (setq x (make-instance 'tfoo))
#<tfoo oid: 11, trans: nil,  modified @ #x71fdb23a>
cl-user(21): (setf (slot-value x 'a) 3330)
3330
cl-user(22): (slot-value x 'a)
3330

;; commit that object
cl-user(23): (commit)
t

;; delete the object
cl-user(24): (delete-instance x)
t

;; with the object deleted the slot is no longer accessible
cl-user(25): (slot-value x 'a)
Error: attempt to access a deleted object:
       #<tfoo oid: 11, trans: 6,  deleted @ #x71fdb23a>

Restart actions (select using :continue):
 0: Return to Top Level (an "abort" restart).
 1: Abort entirely from this (lisp) process.
[1] cl-user(26): :reset

;; rollback the state to the last commit
cl-user(27): (rollback)
6

;; now the object is no longer deleted and the slot is visible
cl-user(28): (slot-value x 'a)
3330
cl-user(29): 



AllegroCache 3.1.0 20

Iteration

(doclass (var class-expr &key (db *allegrocache*))
           &body body)
will evaluate class-expr to get a class object or class name and will then evaluate body 
with var bound to successive objects from the class.   The iteration is done in a (block 
nil ...) context so that with the body a (return) will leave the iteration and  return a value 
from doclass.

(doclass* (var class-expr &key (db *allegrocache*))
            &body body)
is just like doclass except that objects from the named class and all subclasses of that 
class are bound to var during the iteration.

Class Cursors

A class cursor allow a program to iterate through the instances of a persistent class.   This 
is similar to doclass.

(create-class-cursor class)
returns a class cursor for the given class or nil if AllegroCache can determine 
immediately that there are no instances of the class.   class can be a symbol or a class 
object.    The program should eventually call free-class-cursor on all class cursors 
created.

(next-class-cursor cursor &key oid)
returns the next object of the given class.   If oid is true then it returns the object id rather 
than the object.  next-class-cursor returns nil if there are no more objects to return.

You should not call commit or rollback while using a class cursor since it may prevent 
thecursor from iterating over all objects of the class.

(free-class-cursor cursor)
frees the resources used by the cursor.   This should be called by the program when it is 
finished using the cursor.   After this is called no further operations should be done on this
cursor.

Maps

A map is a table that maps a key to a value.   It’s like a persistent hash table.   As currently
implemented each map is stored as a B-tree on disk.   This means that it occupies space 
on the disk and it requires operating system resources to maintain a connection to the b-
tree.  Therefore use maps sparingly (create no more than a few hundred of them).



AllegroCache 3.1.0 21

In versions of AllegroCache before 0.9.0 the open-map call was used to create new maps 
and gain access to existing maps.   In 0.9.0 maps were changed to be just normal 
persistent objects of type ac-map.     Beginning in version 1.2.4 we introduced a new type
of map ac-map-range and we suggest that users no longer use ac-map.   We do maintain 
the class ac-map for upward compatibility.

The difference between ac-map and ac-map-range is the way the map keys are encoded.   
In an ac-map-range the keys are encoded as they are in indexes so that keys are stored in  
numerical or lexicographic order (for numbers and strings).   This then allow access to the
subsequences of the map using cursors.

 

The definition of the the map classes are is in part

(defclass ac-map ()
  ((ac-map-name  
       :initform nil

  :accessor ac-map-name
  :initarg :ac-map-name
  :index :any
  )

    ....)
   (:metaclass persistent-class))

(defclass ac-map-range (ac-map)
  ()
  (:metaclass persistent-class))

From the definition you can see that you can name a map when you create it by using 
the :ac-map-name initarg and you can find a map by name by using retrieve-from-index

(retrieve-from-index ‘ac-map-range ‘ac-map-name  “mymap”)

Unlike earlier versions of AllegroCache  more than one map can have the same name.

The open-map function is still present but its use is deprecated as you can now create 
maps with make-instance.  open-map  will only create a map of class ac-map and this is 
another reason to not use this function.

open-map (name &key (db *allegrocache*)
                    (if-does-not-exist :create)
                    (if-exists :open))
create or access the map named name in the database db



AllegroCache 3.1.0 22

if-exists what to do if the map already exists 
•  :open  - return a connection to an existing map
• :error - signal an error

if-does-not-exist what to do if the map does not exist yet
• :create  -  create a new map
• :error   -  signal an error

open-map returns an object which can be passed to map-value to access the map.

Changes to the map are only permanent if you do a commit..  On a rollback all changes 
to a map since the last commit are lost.

map-value (map key)

returns two values:  the value associated with the key and t to indicate that the value was 
found.   map-value returns  just nil if there is no value associated with key.

(setf (map-value map key) value)
 
stores the value in the map under the given key.   After this call is made neither the key 
object nor the value object should be destructively modified until after a commit or 
rollback.

remove-from-map (map key)

remove the given key from the map.   This is like the remhash function used with hash 
tables.

map-map (function map)

The given function of two arguments is applied to each key and value pair  found in the 
map.    A map consists of committed and uncommitted data.   In a map of type ac-map-
range the committed data will be passed the the function in ascending order of keys.  The 
uncommitted data will be presented in any order.

;; create an ac-map-range



AllegroCache 3.1.0 23

cl-user(3): (setq m (make-instance 'ac-map-range
                       :ac-map-name "mymaprange"))
#<ac-map-range oid: 13, ver 5, trans: nil,  modified @ #x724606da>

;; store three values in the map
cl-user(6): (setf (map-value m 10) 300)
300
cl-user(7): (setf (map-value m 20) "twenty")
"twenty"
cl-user(8): (setf (map-value m 30) '(a b c d e))
(a b c d e)

;; show the values in the map.   The data is uncommitted so 
;; it will be presented in an unspecified order
cl-user(9): (map-map #'(lambda (k v) (print (list k v))) m)

(30 (a b c d e)) 
(10 300) 
(20 "twenty") 
nil
cl-user(10): (commit)
t

;; after comitting we see that the data is now in sorted order
cl-user(11): (map-map #'(lambda (k v) (print (list k v))) m)

(10 300) 
(20 "twenty") 
(30 (a b c d e)) 
nil
cl-user(12):

retrieve-from-map-range  ((map ac-map-range) 
                          initial-value end-value 
                          &key (key t) (value t))
returns a list of keys and value from the map.  The keys are greater than equal to initial-
value and less than end-value.   The returned lists consists of  conses, where the car of 
the cons is the key and the cdr is the value.   The conses are ordered by key value from 
smallest to largest (according to the ordering specified for index values) .   You can chose 
to not compute and return the key and value values by specifying nil  for the :key and 
:value keyword arguments.  If both :key and :value are given nil values then the return 
values is a list of nil's, one for each key/value in the range in the table.

This function only returns committed values.  

cl-user(5): (setq mm (make-instance 'ac-map-range))
#<ac-map-range oid: 13, ver 5, trans: nil,  modified @ #x10018cf782>
cl-user(6): (dotimes (i 20) (setf (map-value mm i) (* i i)))
nil
cl-user(7): (commit)
t



AllegroCache 3.1.0 24

cl-user(8): (retrieve-from-map-range mm 5 10)
((5 . 25) (6 . 36) (7 . 49) (8 . 64) (9 . 81))
cl-user(9): (retrieve-from-map-range mm 5 10 :value nil)
((5) (6) (7) (8) (9))
cl-user(10): (retrieve-from-map-range mm 5 10 :key nil :value nil)
(nil nil nil nil nil)
cl-user(11): 

map-count ((map ac-map-range) 
           &key initial-value end-value transient           
                (committed t) max)

returns the number of values in the map.    Specifying initial-value  and/or end-value 
will limit the count to those key values greater than or equal to initial-value and less than
end-value.   If max is given then the counting will cease when it reaches the value max 
and max  will be returned.

This function only works for committed values.   Thus transient must have a value nil.  If
committed  has a value nil then zero will always be returned.

cl-user(5): (setq mm (make-instance 'ac-map-range))
#<ac-map-range oid: 13, ver 5, trans: nil,  modified @ #x10018cf782>
cl-user(6): (dotimes (i 20) (setf (map-value mm i) (* i i)))
nil
cl-user(7): (commit)
t
cl-user(11): (map-count mm)
20
cl-user(12): (map-count mm :initial-value 10)
10
cl-user(13): (map-count mm :initial-value 10 :end-value 15)
5
cl-user(14): (map-count mm :initial-value 10 :end-value 15 :max 3)
3
cl-user(15):

Map Cursors

A map cursor is an object that points into a map.   You can move the cursor forward and 
backwards and retrieve the key and value to which it points. 

The map cursor only maps over committed objects in the map.

Map cursors can only point into ac-map-range maps.



AllegroCache 3.1.0 25

create-map-cursor ((map ac-map-range) 
                   &key initial-value limit-value position)
returns a map-cursor object that will scan over the map map.   The map cursor is 
positioned at the beginning of the map unless initial-value or position is specified. 

If initial-value is given the cursor it set to point to the key whose value is initial-value.  
If such a key doesn't exist then the cursor is set to point to the value just after where the 
key initial-value be place if it had been in the map.

If initial-value is nil and position is :last then the cursor is placed on the last value in the 
map.

If limit-value is given then it specifies that the cursor will stop scanning the index 
forward when it reaches the point at which limit-value is or would be found as a key in 
the map.    The limit-value is only used by next-map-cursor and not by previous-map-
cursor.
   If there are no committed objects in the map, create-map-cursor may return nil. 

next-map-cursor ((cursor map-cursor) &key (key t) (value t))
advances the cursor to the next key and value and returns three values: key, value and t.

The keyword arguments key and value can be specified as nil to indicate that the caller 
doesn't care about the key or value being returned.   This can save time in decoding the 
values from the map.

The first time next-map-cursor is called after the cursor is created, next-map-cursor 
will not advance the cursor before returning the key and value.

next-map-cursor will return just nil when there are no more values to return.   At that 
point the cursor object is disconnected from the associated map and cannot be used again.

previous-map-cursor ((cursor map-cursor) 
                      &key (key t) (value t))
backs up the cursor to the previous key and value and returns three values: key, value and 
t.

The keyword arguments key and value can be specified as nil to indicate that the caller 
doesn't care about the key or value being returned.   This can save time in decoding the 
values from the map.

The first time previous-map-cursor is called after the cursor is created, previous-map-
cursor will not back up the cursor before returning the key and value.

previous-map-cursor will return nil when there are no more values to return.   At that 
point the cursor object is disconnected from the associated map and cannot be used again.



AllegroCache 3.1.0 26

free-map-cursor ((cursor map-cursor))
disconnects the map cursor from the associated map.   After this call is made no further 
cursor operations can be done.   It's important to do this disassociation for every cursor 
you create to allow the backend database to free the cursor it uses to match the map-
cursor.   You needn't call this function if a call to next-map-cursor or previous-map-
cursor returned nil, as when this occurs the disassociation has been done.



AllegroCache 3.1.0 27

Sets

A set is constructed just like any other persistent object using make-instance.   The name 
of the set class is ac-set.  

(make-instance 'ac-set)

You can add objects to a set and remove objects from a set.   The only objects that can be 
stored in a set are those objects that can be stored in the database (see the previous table 
that lists such objects).

add-to-set ((set ac-set) value)
add value to the set.    If value is already in the set then nothing is done.

remove-from-set ((set ac-set) value)
remove value from set.

(doset (var set) &rest body)
A macro which iterates over all the elements in the set binding var to each element and 
evaluating the forms in the body.

set-member (value (set ac-set))
return true if value is a member of set.   The membership test is equal.

set-count ((set ac-set) &key transient (commited t) max)
Return the number of elements in the set.   If transient is true then the count will reflect 
items added and removed during the current transaction.   If committed is true then the 
count will reflect data previously committed.    The default value for transient is false 
and committed is true.
If max is given then it should be an integer and it is the maximum value that set-count 
will return.   By specifying a value for max you allow set-count to return without having 
to read all of the set data.
The set-count function can run much faster (especially in client/server mode) if it doesn't 
have to consider transient data.   Thus if possible don't pass a true value for transient.

set-count used to take a db argument but now the database to use is found by (database-
of set).  

Indexes



AllegroCache 3.1.0 28

Index values are stored in the following order:

1. all other lisp values
2. negative infinity
3. integers and floating point numbers, ordered from least to greatest value
4. positive infinity
5. floating point NaN
6. strings sorted lexicographically by the unicode value of their characters 

You can use this ordering to retrieve values within numeric or string ranges.    You’ll find 
the retrieve-from-index-range function described in this section and then a whole 
section on Cursors follows this section on Indexes.

retrieve-from-index ((class persistent-class)
                      slot-name value 
                      &key (db *allegrocache*) 
                            all 
                            oid)

retrieves the object or objects of class class that have value in the slot slot-name.
In order to use this function slot-name must have been declared to have an index when 
the class class  was defined.

all return all objects or oids instead of the first one.  It is intended that 
nil will be used when you know there are zero or one values.  In 
other words, for :any-unique index.

oid if true return the object id instead of the object.

retrieve-from-index ((class-name symbol)
                      slot-name value 
                      &key (db *allegrocache*) 
                            all 
                            oid)

This method is identical to the previous method except that it takes a class name symbol 
as the first argument.   The class-name must name a persistent-class.

retrieve-from-index* ((class persistent-class)
                      slot-name value 
                      &key (db *allegrocache*) 



AllegroCache 3.1.0 29

                            all 
                            oid)

This method is just like retrieve-from-index except the given class and all subclasses are
examined to find objects to return.  If all is nil then the first object found is returned.  The
order that the given class and its subclasses are searched is unspecified. 

retrieve-from-index* ((class-name symbol)
                      slot-name value 
                      &key (db *allegrocache*) 
                            all 
                            oid)

This method is just like the above method except that a class name is specified.   The 
class-name must name a persistent-class.
 

oid-to-object ((class persistent-class) oid
               &key (db *allegrocache*))

return the object of the given class with the given oid.   You must specify the exact class 
of the object with the given oid or nil will be returned.   See oid-to-object* below for a 
related function.

oid-to-object  ((class-name symbol) oid 
                 &key (db *allegrocache*))

this method is identical to the previous method except a class name is specified instead of
a class object.

oid-to-object*  ((class class) oid &key (db *allegrocache*))
This returns the object with the given oid, checking all classes that a subclass of the given
class.   The given class can be any class, persistent or not.

oid-to-object* ((class-name symbol) oid 
                 &key (db *allegrocache*))
This method is identical to the previous method except that the class-name is specified 
instead of the class.   Given an oid whose class is unknown you can find the object with

(oid-to-object*  t oid)



AllegroCache 3.1.0 30

since the class t is the superclass of all classes.

    
db-object-oid  (persistent-object)

Return the object id (oid) of the given persistent object.

retrieve-from-index-range (class slot-name 
                            initial-value end-value 
                           &key (db *allegrocache*) oid)

returns all objects of the given class (a persistent-class object or a symbol) whose slot 
slot-name has a value in the range beginning with initial-value up to but not including 
end-value.   If oid is true then the object id values are returned instead of the objects.

If initial-value is not specified then objects returned begin with the first object in the 
index.  If end-value is not specified then all objects from the initial-value up to the end 
of the index are returned.

Sorting is only done on integers, floating point numbers and strings.  Passing any other 
type of value as initial-value or end-value will signal an error (although passing nil is 
the same as not specifying a value).

Very important note: this function only returns values that have been committed to the 
database because only the database on disk keeps the index values sorted.   Thus before 
calling this function on newly created data you should commit the data.

For example, suppose the Employee object is defined as
(defclass Employee
   ((first-name :index :any)
    (last-name  :index :any)
    (salary))
  (:metaclass persistent-class))

We could find all the employees whose name begins with F by evaluating
(retrieve-from-index-range ‘Employee ‘last-name “F” “G”)

We could find the oids of all the employees whose first name begins with “Jo” and whose
last name begins with “F” using

(intersection (retrieve-from-index-range 
                    ‘Employee ‘first-name “Jo” “Jp” :oid t)



AllegroCache 3.1.0 31

              (retrieve-from-index-range 
                    ‘Employee ‘last-name “F” “G”   :oid t))

index-count (class slot-name &key (db *allegrocache*)
                   initial-value
                   end-value
                   transient
                   (committed t)
                   max)

returns the number of values that would be returned by retrieve-from-index given the 
same values for class, slot-name, db, initial-value and end-value.   If max is specified 
then index-count will return a value no larger than max.   Specifying max will allow 
index-count to return without reading all values in the index.    At this time index-count 
can only count values committed to the database.   As a result the transient argument 
must remain nil and the committed argument must remain t (these are the default values 
for these arguments).

Index Cursors

A cursor in a pointer into an index.   You can use a cursor to retrieve objects one at a time 
rather than all at once in a list.

A cursor can only reference an index in the database on disk, it cannot reference 
uncommitted index values (this is not the same as the retrieve-from-index function 
which looks both in the database and in uncommitted data).

A cursor is created with create-index-cursor and then passed to next-index-cursor until 
that function returns nil.   At that point the cursor is exhausted and you can just drop the 
reference to the cursor and it will be garbage collected.

create-index-cursor (class slot-name
    &key (db *allegrocache*)

 initial-value
 limit-value

                                 position
                                 unique
                                 preread)

creates and returns an index cursor for slot slot-name of class class (which can be a 
symbol or a class object).    The initial-value argument, if given, specifies that the cursor 
should begin at location in the index where initial-value would be found, if it was in fact 
it was in the index.   If limit-value is given then it specifies that the cursor will stop 
scanning the index forward when it reaches the point at which limit-value is or would be 
found in the index.    The limit-value is only used by next-index-cursor and not by 



AllegroCache 3.1.0 32

previous-index-cursor.   If position is :last and initial-value isn't given then the cursor 
will be positioned on the last item in the index.  This is useful if you wish to scan the 
index backwards.  
 If preread is true then the contents of the whole index will be read in order to put the 
blocks of the index in the operating system's file cache.   If you plan to do a operation that
will scan the entire index then do this preread will speed up a large index scan by a 
tremendous amount
 If unique is true then this is a very special kind of cursor that only returns the first item 
found for any index value.   This is designed for one purpose: to be able to find the set of 
unique values in the index, as shown here

(defun find-unique-index-values (class slot)
  (let ((cur (create-index-cursor class slot :unique t))
        (res))
    (loop 
      (let ((value (next-index-cursor cur :oid-value :value)))

(if* (null value) then (return))
(push value res)))

    res))

An index cursor can only be created for slots on which an index was requested in the 
defclass expression that defined the class.

next-index-cursor ((cursor index-cursor) &key oid oid-value)

advances the cursor and returns the next object (or oid if the keyword :oid is specified as 
true).  The first time that next-index-cursor is called after the cursor is created the cursor 
is not advanced and instead next-index-cursor returns the object to which the cursor 
points.

If :oid-value is specified as true then two values will be returned: the oid and the index 
value, however if :oid-value is specified as :value then only the index value is returned.

next-index-cursor returns nil when the cursor has reached the end of the values in the 
index or the limit-value specified in create-index-cursor.

previous-index-cursor ((cursor index-cursor) 
                           &key oid oid-value)

This is just like next-index-cursor except that the cursor moves in the opposite direction 
towards the beginning of the index

free-index-cursor ((cursor index-cursor))

Once next-index-cursor returns nil the resources used by the cursor are freed.



AllegroCache 3.1.0 33

If you wish to free an index cursor before next-index-cursor returns nil then call free-
index-cursor.   
 

As an example of the ors, this is the definition of retrieve-from-index-range described 
above:

(defun retrieve-from-index-range (class slot-name 
                                  initial-value end-value

       &key (db *allegrocache*)
    oid)

  (let ((cursor (create-index-cursor class slot-name 
     :db db
     :initial-value initial-value
     :limit-value end-value)))

    (do ((obj (next-index-cursor cursor :oid oid)
      (next-index-cursor cursor :oid oid))
 (res))
((null obj) (nreverse res))

      (push obj res))))
      
You can take advantage of the fact that indexes are sorted to retrieve the values in an 
index from lowest to highest.   In this example we create 100 objects with a random 
integer in the one slot named a.   Then we use a cursor to retrieve in order the 10 smallest 
random numbers computed and stored in slot a. 

(defclass* sample () (a :index :any))

(defun testit ()
  (create-file-database "foo.db")

   ; store 100 objects in the database with 
   ; random values for the a slot
  (dotimes (i 100)
    (make-instance 'sample :a (random 1000)))
  
  (commit)
  
  ; print out the values of the a slot for the lowest 10 values
  (let ((cur (create-index-cursor 'sample 'a)))
    (dotimes (i 10)
      (let ((obj (next-index-cursor cur)))

   (if* obj then (format t "a is ~s~%" (a obj)))))
    (free-index-cursor cur))
  (close-database))



AllegroCache 3.1.0 34

Here it is in operation:

cl-user(3): (testit)
a is 0
a is 32
a is 34
a is 47
a is 47
a is 49
a is 63
a is 75
a is 91
a is 112
#<AllegroCache db "/home/jkf/acl8/src/cl/src/acache/foo.db" 
-closed- @
  #x7215b3b2>
cl-user(4): 

Expression Cursors

Expression cursors allow a program to select objects of a class based on the value of  one 
or more slots.    This is a new facility and we will be extending it in future versions of 
AllegroCache.  Expression cursors are a somewhat low level facility and we will create a 
high level query system that will make use of expression cursors.

create-expression-cursor (class expression &key commit)
creates a cursor that returns all items of the given class that satisfies the given expression.
nil may be returned instead of a cursor if the expression obviously denotes no objects of 
the given class.   class can be a symbol naming a class or a class object.

In order to create an expression cursor the class given must be interned.   If there are 
instances of the class in the database then the class will be interned already.  If there are 
no instances then the class may not be interned and create-expression-cursor will intern 
the class on one condition:  that you allow it to call commit after it does the interning.  

The three possibles values for the :commit argument are:

• t   - if the class had to be interned then create-expression-cursor will  do so and 
will call commit after it interns the class.   If the database was opened read-only 
then :commit t is treated like :commit nil.

• nil – if the class has to be interned, then create-expression-cursor will give up 
and return nil rather than intern the class.

• :error – if the class has to be interned then create-expression-cursor will signal 
an error.



AllegroCache 3.1.0 35

An expression cursor is similar to an index cursor except instead of specifying one slot 
and possibly a range of values to scan over, with an expression cursor you specify an 
expression over one or more slots.    In both an index cursor and an expression cursor, 
once the cursor is created you call next-index-cursor to retrieve the objects matching the 
cursor.    When you're finished with the cursor you call free-index-cursor.

One difference is that you cannot call previous-index-cursor on an expression cursor.

An expression has this syntax:

<expression>  := <slot-expr>  | (:limit <number> <subexpression>)

<subexpression>  := <slot-expr> | <logical-expr>

<slot-expr> := (= <slot-name> <value>) |
               (:range <slot-name> <min-value> [<limit-value>]) |

                              (:regex <slot-name> <regular-expression>)

<logical-expr> := (or <subexpression>*) |  (and <subexpression>*)

<slot-name> :=  symbol naming a slot in the class over which the 
cursor is being created

<number> := is a positive integer like 1000 or 200006

<regular-expression> is an ACL regexp2 style regular expression

In the above pseudo-BNF the square brackets [] denote an optional element, the vertical 
bar | denotes a choice of elements, and the asterisk * denotes a sequence of zero or more 
of the preceding element.

In an expression 

• =  means that it satisfies the equal predicate in Lisp

• :range means that the value is greater than or equal to the minimum value and 
less than the limit value.   A value of nil for the minimum value means start at the 
beginning of the index and a nil for the limit value means continue until the end of
the index.

• :regex means that the value of the slot matches the regular expression (more on 
this below)

• :limit is used to control how much work the expression cursor computation code 
will do to compute the set of results (more on this below)

Here are some examples are expressions



AllegroCache 3.1.0 36

(= foo 4) all instances whose foo slot is equal to 4 
(this includes instances who foo slot has 
value 4.0)

(= foo bar) all instances whose foo slot has the symbol 
bar as a value.  Note that we're not 
evaluating bar.

(= foo “fred”) all instances whose foo slot has the string 
“fred” as the value.   The test is case 
sensitive

(= foo (a b c)) all instances whose foo slot is equal to the 
list (a b c)

(:range foo 10 30) all instances whose foo slot is greater than 
or equal to 10 and less than 30.

(:range foo 10) all instances whose foo slot is greater than 
or equal to 10

(:range foo 10 nil) all instances whose foo slot is greater than 
or equal to 10 

(:range foo nil 100) all instances whose foo slot is less than 100

(:range foo “abc” “def”) all instances whose foo slot is string>= 
“abc” and string< “def”

(:regex foo “^abc”) all instances who's foo value begins with 
“abc”   (e.g. “abcdef are letters”)

(:regex foo “[0-9]+”) all instances whose foo slot contains a 
string which contains an integer in it 
somewhere (e.g. “I like 31 flavors”)

(:regex foo “\\.jpg$”) all instances whose foo slot is a string 
ending in  “.jpg” (e.g. “rambo.jpg”)

Some of the the above expressions work whether the slot foo is indexed or not.    Even 
those that do work over un-indexed slots will work much faster if the slot is indexed.  
Regular expression tests only work over indexed slots.   

The objects found by the :range expressions where the minimum or maximum value is 
not given can be non-intuitive.   You have to consider the ordering of values in an index 
given in the table on page 28.    That table notes that strings are stored later in the table 
than integers.   Thus the expression (:range foo 10 nil) will find all objects whose foo slot 
contains 10 or greater as well as all objects whose foo slot contains a string.

However, at the present time, if the foo slot is not indexed the only objects that will be 
returned are those whose foo slot contains a number that is greater than or equal to 10.  
This difference is due to the fact that the computation of the range predicate is done 
differently if there is no index.   We may choose to change this behavior in a future 



AllegroCache 3.1.0 37

version therefore it's best to avoid using range expressions that don't specify both 
minimum and limit when scanning over non-indexed slots.

Using and and or you can create compound expressions:

(and (= foo 3) (= bar 4)) all instances whose foo slot is equal to 3 
and whose bar slot is equal to 4

(or (= foo 10) (= foo 20)) all instances whose foo slot is equal to 10 
or 20

(and (= first “joe”) (= last “smith”)) all instances whose first slot is “joe” and 
whose last slot is “smith”

(or (and (= first “joe”) (= last “smith”))
     (and (=  first “jane”) (=  last “doe”))

all instances whose first slot is “joe” and 
last “smith” or whose first is “jane” and last
“doe”

(and (= foo  24) (:range bar 10 30)) all instances whose foo slot is equal to 24 
and whose bar slot is greater than or equal 
to 10 and less than 30

While the answer doesn't depend on the order of the arguments to an and or or 
expression, the time taken to compute the answer can vary based on the ordering.  It's best
to put expressions over slots with indexes before expressions over  slots without indexes.

Testing predicates over non-indexed slots must be done in the client (if you're running a 
client/server version).  This requires passing messages between the client and server so be
sure to take this into account when you are considering using expression cursors over 
non-indexed slots.

Expression cursors are designed to be used when you are testing more than one 
expression over one or more slots.   If you are just testing a single expression then you are
better off using functions like retrieve-from-index and retrieve-from-index-range.

In this example of using expression cursors we'll create an object for each person and 
store their gender and age.

(defclass* person (:defprinter t) 
         (gender :index :any) 
         (age :index :any))

(defun populate ()
  (create-file-database "people.db")
  (dotimes (i 1000)
    (make-instance 'person
      :gender (aref '#(:m :f) (random 2))
      :age (random 100)))



AllegroCache 3.1.0 38

  (commit)
  (close-database))

Calling (populate) will build a sample population.

Our query function is this.  It prints all members of the person class of the given gender 
and with an age in the given range.

(defun find-people (gender min-age limit-age)
  (open-file-database "people.db")
  (let ((cur (create-expression-cursor 
                  'person

         `(and (= gender ,gender)
                        (:range age ,min-age ,limit-age)))))
    (if* cur
       then (loop (let ((obj (next-index-cursor cur)))

    (if* (null obj) 
       then (free-index-cursor cur)

    (return))
    (print obj))))

    (terpri)
    (close-database)
    :done))

We test out our query function:

cl-user(12): (find-people :m 30 35)

#<person [29] :m 34> 
#<person [94] :m 31> 
#<person [120] :m 31> 
#<person [199] :m 32> 
#<person [290] :m 31> 
#<person [298] :m 30> 
#<person [308] :m 30> 
#<person [335] :m 33> 
#<person [363] :m 34> 
#<person [420] :m 32> 
#<person [496] :m 31> 
#<person [500] :m 34> 
#<person [590] :m 34> 
#<person [698] :m 31> 
#<person [754] :m 30> 
#<person [826] :m 34> 
#<person [880] :m 32> 
#<person [898] :m 33> 
#<person [920] :m 32> 
:done



AllegroCache 3.1.0 39

cl-user(13): 

:regex
Regular expression cursors work best if the regular expression specifies the first few 
characters the matching string must contain.   A regular expression such as “^SN” 
specifies that the first two characters must be S and N and thus allows the search for 
matches to zero in on that part of index where it might find such values.  If you wrote the 
expression as “SN” then you may get the same results however it will require every object
be examined to see if its slot contains a string with “SN” anywhere in it. 

The regular expression given need not matching the whole value of the slot.  The regular 
expression “^SN” will match “SN” but it will also match “SN1123-12-12123”.   If you 
want your regular expression to match the whole value then use the caret and dollar sign 
characters as in  “^SN[-0-9]+$”  which will match “SN123-123-42334” but not “SN23 is 
good”.

:limit
 When evaluating an expression cursor there are times when acache must build a table of 
intermediate results (such as when evaluating an and clause).   Once acache starts 
computing these intermediate results it can take a long time and use a lot of storage.  This 
clause allows you to state that if the number of intermediate results is larger than the first 
argument to :limit then the function that causes the computation (usually  next-index-
cursor) will return :precompute-limit-exceeded right away instead of continue to 
compute the result set.

    One must keep in mind that a huge number of intermediate results doesn't mean that 
the number of final results will be large as well.

    Here is an example of an expression cursor expression where the :limit clause can be 
useful.   
    
           (:limit 1000000

(and  (:regex date "^200") (:regex itemnum "^300")))
    

Compressed Indexes

Index files can grow very large because they contain a portion of the history of the index 
as well as the current values. Also they are designed for speed of access not space 
efficiency and for the ability to be modified while the application is running.

If a database is to be accessed read-only then one can convert the index files to a different 
format, one that is more space efficient and which eliminates the history of the index.  We
call this format the trie format.  Trie is commonly pronounced “try”.



AllegroCache 3.1.0 40

(compress-indexes &key db remove-compressed 

                          remove-original)

compress-indexes can only be called in standalone mode.  When you want to create a 
smaller size version of your database suitable only for read only operation you'll open it in
standalone mode and call compress-indexes.   By default this function will look for any 
index file that has not been compressed since it was last modified and it will compress it. 
The result will be a file ending in trie in the database directory.   After compress-indexes 
is done and the database is closed, if you open the database in read-only mode (either 
standalone or client-server) then acache will use the trie indexes instead of the normal 
indexes.   If you open the database in non read-only mode then acache will use the normal
indexes.

Since your goal is to reduce disk space for your database it doesn't make much sense to 
keep the original and compressed indexes in the database dircectory.   Therefore you 
would typically create your compressed indexes this way:

   (compress-indexes :remove-original t)

which will remove the original index after it has compressed it.   The resulting database 
will take up less disk space but it can only be opened in read-only mode.   If you open it 
in non read-only mode then acache will not be able to find the index files it needs.

If you're experimenting with compressing indexes then you might find 

  (compress-indexes :remove-compressed t)

to be useful.  It will only remove the compressed indexes and will do no compression.   
It's useful for cleaning out your database directory if you decide that you're not longer 
interested in storing the compressed indexes.  If you do this you had better have the 
original indexes still in the database directory or you'll end up with no indexes at all and 
thus a database that is non-functional.

A compressed index is designed to be a drop in replacement for a regular index.  There 
are a few differences:

1. the index is read-only.  

2. you can only scan the index in the forward direction (next-index-cursor) and not 
the reverse direction (previous-index-cursor).

3. the ordering of index values is similar to the regular index for strings and integers.
For all other values (such as floating point and infinities) the ordering is non-
deterministic.



AllegroCache 3.1.0 41

Transactions

commit  (&key (db *allegrocache*))

The commit function attempt to save all changes made to persistent objects to the 
database. The commit will fail if an an object to be saved was modified by another 
database client since the time that this client got a copy of the object from the database.   
If AllegroCache is used in standalone mode then the commit cannot fail since there is 
only one client to the database.

If the commit succeeds the client is now viewing the latest state of the database (that is 
the client will now see changes all changes committed by all clients).

rollback  (&key (db *allegrocache*))

Abandon all changes made to the database since the last call to commit or rollback.  Then
advance the view of the database so that the client is now viewing the latest committed 
state of the database.

Instances of persistent classes created since the last commit or rollback will continue to 
exist in Lisp memory (because there’s no way for AllegroCache to eliminate them) but the
application should not attempt to access the slots of these objects.   The application 
should eliminate all pointers to them so that Lisp can garbage collect them.

The following macro is useful when writing code to be run in the client/server mode 
where more than one client may be accessing the database.

(with-transaction-restart (&key (verbose t) message count)
                          &rest body)

The body forms are executed in a context where a commit failure will cause rollback to 
be called and then the body forms to be automatically re-executed.  The arguments are

verbose If true then should a commit fail inside the body a message 
will be printed to *standard-output* .   The default value for 
verbose is true.

message If a commit failure causes a message to be printed then the 
value of message (which should be a string) is printed as well 



AllegroCache 3.1.0 42

as a way of personalizing the message to this particular use of 
with-transaction-restart

count The number of times that the restart should be tried before 
giving up and signaling an error.  The default is 10.  Setting 
count to nil will allow restarts to be tried forever.

Note that with-transaction-restart does not call commit itself.  It is up to your application 
to call commit.

Here's a typical use of  this function.  We want to change a slot value from 34 to 52 and 
we just wrap that in a with-transaction-restart to ensure that it works well in a multi-user 
situation

(defun fixup ()
  (with-transaction-restart nil
    (let ((val (retrieve-from-index 'foo 'i 34)))
      (if* val 

     then (setf (slot-value val 'i) 52)
          (commit)))))

Let's use the example above to make another point about AllegroCache programming 
style.  Suppose you really did care to periodically check for a foo object with an i slot 
whose value is 34 and wanted to change it to 52.   Thus you arranged to call the fixup 
function above every few seconds.  If this is all the database operations you were doing 
then you would find that fixup would soon run out of work to do.   That's because  if 
fixup doesn't commit then fixup will never see any changes made by other processes to 
the foo objects. 

Thus you're likely to want to write this as:

(defun fixup ()
  (rollback)   ;;; add this line
  (with-transaction-restart nil
    (let ((val (retrieve-from-index 'foo 'i 34)))
      (if* val 

     then (setf (slot-value val 'i) 52)
          (commit)))))

Now when fixup starts it first does a rollback which puts it up-to-date with the latest 
state of the database and then it begins its transaction.    Of course you don't want to call 
rollback unless you're sure that no other function has made a change to the persistent store
that  it wants to save.  

last-transaction-number (&key (db *allegrocache*))



AllegroCache 3.1.0 43

This returns the number of the last transaction that successfully committed to the given 
database as far as this client is aware.   Remember that a client only synchronizes with the
database when the client calls commit or rollback.    A client watching for the database to 
change by virtue of the work of other clients can just call this function after calling 
rollback.  If the value returned by last-transaction-number is different then some other 
client has successfully committed to the database.

Saving and Restoring Databases

A database can be saved as an xml file and that xml file can be read and the database 
reconstructed.    The main purpose of saving and restoring a database is that it will allow 
you to migrate your data from one version of AllegroCache to the next.     Another reason 
is to compact the tables used in the database.   Also the fact that the save format is xml 
means that you can write tools outside of AllegroCache to analyze the database. 

As noted above an AllegroCache database holds a number of different database states.  
When a database is saved only the most recent state is saved.   A Standalone 
AllegroCache only has one state so the saving of only one state is natural.   For the client-
server AllegroCache the client initiates the saving of the database but it’s the server that 
does the saving of the database (and stores it in a file on the server).   Regardless of the 
current transaction number of the client, the server stores the state associated with the 
most recent transaction number.

save-database (filename &key (db *allegrocache*) 
                             file 
                             (verbose t))

Store the latest state of the database in the file filename.
If file is given then it names a database (as in the first argument to open-file-database) and
that database is opened, then saved as xml in filename, and then closed.
If file is not given then db should be an open database connection and that database is 
saved.  
If verbose is true then comments will be written to the resulting xml file describing what 
the encoded data represents as lisp objects.   This can add a significant amount of time to 
the saving process so you'll likely want to disable verbose dumping for huge databases.  
The verbose switch has no effect in client/server mode since the server does not have 
enough information to do the annotation.

In client/server mode all other clients will be blocked from committing while one client 
does a save-database.



AllegroCache 3.1.0 44

restore-database  (filename db-file)

Reads the xml file filename and creates the database in directory db-file.    If db-file 
already exists it will be overwritten.

In client/sever mode the client can call save-database.  However to restore the database  
you run inside a standalone AllegroCache.  Once the database is built you can then call 
start-server to begin a server process serving this database.

Transaction Logs

Beginning in version 1.1.0 AllegroCache stores all data in files known as transaction 
logs. B-trees are still used as indexes to locate data in the transaction logs but the b-trees 
can be reconstructed using only the data in the transaction logs.   Thus the database can be
said to be stored entirely in the transaction logs.

Each database has a set of transaction logs numbered from zero to N.   A transaction log is
written to only at the end.   Once the log file reaches a certain size AllegroCache closes 
that log file and creates a new one.   Log files other than the newest are never modified by
AllegroCache.  Older log files may need to be read by AllegroCache and if  they are then 
they are opened in read-only mode.

The purpose of this design is to allow the database to handle situations where it's abruptly
terminated, such as loss of power or disk failure.   The only places that an AllegroCache 
database is vulnerable are the b-trees and last block of the newest log file.    The b-trees 
can be recreated from the log files and AllegroCache can locate the last valid record in the
last log file, ignoring any illegal values place at the end of the log.

Another advantage of this design is that you can back up the database by just copying the 
log files to your backup media.  Once a log file is not the newest log file it will never 
change again, so there's no need to repeatedly back it up.

One problem with this design is that the log files contain the entire history of your use of 
the database and this can take a lot of disk space.   AllegroCache contains a function to 
compress log files, eliminating that data that will never be referenced again.   The old log 
files are not modified, they are simply renamed and new smaller log files are created in 
their place.  The database administrator will delete the old log files or move them to a 
backup device in order to complete the process of freeing up space in the database.

First we'll describe how to recover a database from its log files and then how to compress 
a database.

Database Recovery from Log Files

The log files for a database have names of the form acNNNNNN.dat where NNNNNN is 
a number beginning with 000000 followed by  000001 etc.   The oldest log file is 
ac000000.dat.

Log files contain a record of the operations you performed on the database, and in 



AllegroCache 3.1.0 45

particular they record all calls to commit.   You can recover the database to the state it was
in following any successful commit (i.e. a commit that didn't signal an error).

If you want to recover the database to the latest state recorded in the log files then you can
skip right to call to recover-from-log.   If you want to recover to some intermediate point 
then you call this function:

recovery-times (directory)

This function reads all the log files in the directory and returns a list of all the successful 
commits.  Each item in the list is a transaction number followed by the time of the 
commit in universal time and in human readable format.

For example
cl-user(8): (pprint (recovery-times "bigac.db"))

((16 3352128789 "3/23/2006 10:53:09") (15 3352128789 "3/23/2006 10:53:09")
 (14 3352128788 "3/23/2006 10:53:08") (13 3352128787 "3/23/2006 10:53:07")
 (12 3352128787 "3/23/2006 10:53:07") (11 3352128786 "3/23/2006 10:53:06")
 (10 3352128785 "3/23/2006 10:53:05") (9 3352128785 "3/23/2006 10:53:05")
 (8 3352128785 "3/23/2006 10:53:05") (7 3352128785 "3/23/2006 10:53:05")
 (6 3352128785 "3/23/2006 10:53:05") (1 3352128785 "3/23/2006 10:53:05"))
cl-user(9): 

To recover the database from its logs you call this function

recover-from-log (log-directory db-directory 
                     &key log-size transaction)

A fresh database is created in db-directory and the logs from log-directory are read and 
used to fill the database.   If the :transaction argument is given then the database will be 
filled with all data up to and including that transaction number (see recovery-times for 
how to determine the valid transaction numbers in a set of log files).   The :log-size  
argument can be given to specify the log size for the newly created database.   After the 
database is recovered it is closed.

Compressing Log Files

When log files accumulate you'll want to remove old unreachable data from them.  
Compression is a multi-stage process.   First the log files are scanned to find all the 
success commits (since knowing this means that data for unsuccessful commits needn't be
saved).  Next each log file is scanned and still valid data is copied to a new version of the 
log file.    If  the new log file is identical to the old log file (i.e no compression could be 
done) then the new log file is removed as there is no need to keep a duplicate copy.  Once 
all log files have been scanned the database is locked and the old log files are renamed 



AllegroCache 3.1.0 46

(and given a suffix .bNNNN) and the new log files take the place of the old log files.  
Then the b-tree's are modified to point into the correct positions in the new log files.   
Finally the database is unlocked.

There are two important points to note.  The first is that the old log files are not deleted.   
Thus if something goes wrong in the compression you can still get back to your old 
database.  Second,  in a client-server database the compression can be happening while 
database accesses from other clients continue.  It's only in the final phases that the other 
database clients are locked out.

compress-log-files (&key (db *allegrocache*) 
                          (start-log 0) (verbose t))

Compress the log files for the given database.    Start the compression with log file 
number start-log and compress all log files up to the next to newest log file.  If verbose 
is true print out informative messages about the progress.

Once the compression is done you'll have to remove the old versions of the log files 
manually.  They will end in .bNNNN where NNNN is a number indicating that this file is 
a back up of a log file found during the NNNNth call to compress-log-files.

Miscellaneous

In the standalone version and in the client side of the client/server version every persistent
class in the database has a cache of objects of that class.    The cache must be at least as 
large as all the objects currently pointed to by objects in the lisp heap.   It is useful to 
make it even larger though so that objects that might be referenced at some future time 
are found in the cache rather than having to be created by reading them from the database.
A cache that is too large will be a burden to Lisp’s storage management system.    The 
desired size of the cache can vary based on what the program is doing at the moment.  If 
the program is simply creating a large group of objects, committing them to the database 
and then not referring to the objects again the cache can be small.   If the program is 
looking at lots of objects during a computation then a large cache can be very helpful.

The programmer cannot control the exact size of the cache but the programmer can give 
hints to AllegroCache to tell it how the cache size should change.

The object-cache-size generic function returns AllegroCache’s idea of the desired cache 
size for a class.   There are three methods which all do the same thing but take different 
arguments:

object-cache-size  (class-name &key (db *allegrocache*))

object-cache-size  ((class persistent-class)
                     &key (db *allegrocache*))



AllegroCache 3.1.0 47

object-cache-size  ((class ac-class)
                     &key (db *allegrocache*))

These methods return the maximum number of objects AllegroCache will attempt to store
in the cache for the given class.

You can use (setf object-cache-size) to change the maximum cache size.   Note that this is
an advisory number and the cache size will not change immediately.  However during 
subsequent automatic cache object evictions AllegroCache will bring the cache size closer
to the number you specified.     After calling (setf object-cache-size) the value returned by
object-cache-size may not be exactly what you specified.    Object eviction is a process 
that runs concurrent with regular database operations  and the value of object-cache-size 
value us used by AllegroCache itself to track the eviction process.

cl-user(7): (object-cache-size 'foob)
70000
cl-user(8): (setf (object-cache-size 'foob) 5000)
5000
cl-user(9)

flush-object-cache  &key all class (db *allegrocache*))

Start the process of removing from the cache all objects for which there are no references 
in the lisp heap.   The flush-object-cache function causes all objects in the cache to now 
be referenced inside the cache by a weak vector.   When the last (non-weak) reference in 
the heap to an object goes away and then a garbage collection occurs, that object will be 
removed from the object cache.  If an object was referenced from old space then a full 
global gc will be required to detect when that old-space reference no longer exists.

Thus flush-object-cache does not have an immediate effect on the size of the cache but it 
starts a process by which  unreferenced objects will be eliminated from the cache.

If :all t is specified then the object caches for all classes will be flushed.  If a value for 
:class is specified then it should be a class name or class object and that class's cache will 
be flushed.

client-connections (&key (db *allegrocache*))

This function returns a list of connections to the database server in client/server mode.   In
standalone mode it always returns nil. 

The first value in the returned list is the current connection, i.e. the connection used to 
make the call to client-connections.

Each connection is described by a cons, the car of which is the string holding the dotted 



AllegroCache 3.1.0 48

representation of the IP address of the machine connecting to the database and the cdr is 
the port number of the socket on the remote machine.

cl-user(8): (client-connections)
(("127.0.0.1" . 50223) ("192.132.95.84" . 54981))
cl-user(9): 

kill-client-connection (connection &key (db *allegrocache*))

Disconnect the given client from the database and return true if the disconnection was 
done.   It is not permitted to disconnect the client calling kill-client-connection and 
attempts to do so will be ignored and kill-client-connection will return nil.   In order to 
disconnect the current client call close-database.

A client connection is denoted by a cons of the client ip address (in string form) and the 
port on the client.   This is the same form as returned by client-connections.

For example to close of all client connections you could do
cl-user(5): (mapc #'kill-client-connection (client-connections))
(("127.0.0.1" . 56775) ("127.0.0.1" . 44975))
cl-user(6): (close-database)
#<AllegroCache db "port 56775 to localhost:3333" -closed- @ #x10016a1492>
cl-user(7):

connection-alive-p (&key (db *allegrocache*))

Return true if the database object has not been closed and is connected to a live server.  
Note that even if this function returns true the server could die seconds later.   This is just 
the nature of networked applications.    It's best to handle server failure with every client 
operation rather than calling this function once and, it having returned true, expecting the 
server to remain up for a certain duration of time afterwards.

If the server is found to be down the database connection will be closed with close-
database.  

connection-alive-p will work on standalone database as well in which case it works just 
like database-open-p.

It's possible to store objects of non-persistent classes in the database but the user must 
help AllegroCache with the process.   The user must convert the object to be stored into 
something that AllegroCache already knows how to store and when the object is to be 
reconstructed the user must write code to do the reconstruction.    The user must define  
methods on the generic functions  encode-object and decode-object for the class of object 
they wish to store.   You should recall that the defstruct macro defines a class as well so 
this protocol is used to store structures built by defstruct as well.



AllegroCache 3.1.0 49

User code must define these methods

encode-object ((obj my-class))

decode-object ((obj my-class) object-values)

The encode-object function takes an object to be stored and returns a value that 
AllegroCache knows how to store.    For example given this definition of a non-persistent
class:

(defclass frob ()
  ((frob-a :accessor frob-a :initarg :frob-a)
   (frob-b :initarg :frob-b)))

You could write this encoding method:

(defmethod encode-object ((object frob))
  (flet ((do-slot (slot)

   (if* (slot-boundp object slot)
      then (cons slot (slot-value object slot)))))

    (mapcar #'do-slot '(frob-a frob-b))))

Which returns a list of conses holding the slot names and values for the object.   

The next step is writing a decode-object method to reconstruct the object.   This method 
must create the object and fill in the slots appropriately.    The object passed into decode-
object can not be used – a new object must be created.   Here is the method for our 
sample frob class:

(defmethod decode-object ((object frob) slot-vals)
  (let ((frob (make-instance 'frob)))
    (dolist  (sv slot-vals)
      (setf (slot-value frob (car sv)) (cdr sv)))   
    frob))

mark-instance-modified (persistent-instance)

The given persistent-instance is marked as having been modified during the current 
transaction.   This means that the value of this object will be written to the database on 
the next commit.  Normally it isn't necessary to call this function as instances are 
automatically marked modified when values are stored in their slots.   However if the 
value of a slot is a lisp object that itself can be modified (such as an array or a cons) then 



AllegroCache 3.1.0 50

modifications to that lisp object will not cause the persistent object pointing to it to be 
considered modified.

For example here we set an element in the array that's stored in a slot in a persisent object 
and then we call mark-instance-modified so that AllegroCache knows that this persistent 
object has been modified in this transaction.

(setf (aref (slot-value obj 'a) 23) 'foo)
(mark-instance-modified obj)

delete-persistent-class ((class persistent-class) 
                         &key (db *allegrocache*))

Delete the information about the class from the database db.   The class definition will 
remain in the Lisp's heap.   When the database is opened again in a fresh lisp the 
definition of class will not be loaded into Lisp's heap. 

Like other operations on the database, the delete will not take effect until a commit is 
done.

delete-persistent-class will not delete objects of this class from the database.   It is an 
error to reference a persistent object of  a deleted class.   It is an error if some other class 
still references this deleted class.

This function is rarely needed.  The cost of storing a class in the database is minimal so 
there's no need to delete them for that reason.

Example:

cl-user(1): (delete-persistent-class (find-class 'myclass))
cl-user(2): (commit)

(database-of instance)

returns the database connection of the given persistent instance.   Normally this would be 
the same value as *allegrocache* unless the application is using multiple database 
connections simultaneously.

(close-compressed-index-streams &key (db *allegrocache*))

Close any open file streams to compressed index files.   When doing index operations on 
a compressed index database a file stream is opened for the compressed index file and 
that stream will remain open until the database is closed.    This makes index operations 
run more quickly.   If there are a huge number of indexes referenced while the database is 
open then this may use up too many open file handles which are a limited system 
resource.  This function will cause all of those compressed index files to be closed and 
then they will be reopened again as needed.     It is very unlikely that this function will be 



AllegroCache 3.1.0 51

needed as most systems allow thousands of files to be open at once, however if you see 
messages about a failure to open a file due to a exceeding the number of file descriptors 
and you're using a database with compressed indexes (which means also that you're 
opening it read-only) then this function will prove useful.

Where the Illusion Breaks Down

AllegroCache tries to present the illusion of normal CLOS programming but with 
persistence.   This is done using the CLOS metaobject protocol which was designed for 
purposes just like this.  There are however certain operations that are not supported yet 
and certain operations that will never be supported.  We'll describe these operations here

● change-class not supported.   You cannot use change-class if the old or new class 
is a persistent class.    We may make this work in a future version. 

● Destructive modifications to non-CLOS objects are not noticed by AllegroCache.  
If you setf an array element or the car or cdr of a cons AllegroCache cannot tell 
that that modification was done.  Thus AllegroCache's will not automatically save 
that change when a commit is done nor will it undo that change if a rollback is 
done.    This will never work in AllegroCache.    See the documentation for mark-
instance-modified for a way to force a CLOS object and all its slots to be written 
to the database upon a commit.

Upgrading Databases

Whenever possible when we introduce a new version of AllegroCache we use the same 
database format.  This allows you to use the new features on your existing databases. If 
the database format changes then we include functions that allow you migrate your 
database from the old version ot the new version.

In this section we'll note those version of AllegroCache where the database format 
changed and we'll describe how to migrate your old databases.  Our goal is to allow you 
to use older databases in newer versions of AllegroCache.  We are not concerned about 
using newer databases in older versions of AllegroCache although that often works.

AllegroCache versions 1.1.0 to 2.0.1

All of these AllegroCache versions have the same database format.   We'll assume that 
there are no databases in use from earlier versions (if there are please contact us and we'll 
tell you how to upgrade).

We denote these databases as version 8 databases.  If you want to see which version your 
database is use the save-database command and examine the beginning of the xml file 
created for the value of dbver in the admin element.  Here you can see its value is 8:



AllegroCache 3.1.0 52

<admin 
   dbver='8'
   next-oid='163239010'
   next-classid='94'
   next-ivnum='1'
   last-trans='885838'
  />

AllegroCache version 2.1.0

In this version we changed the format of index btrees so that expression cursors would 
work..  This is a version 9 database. 

This is an unusual database upgrade in that the upgrade is optional.  Here are the rules:

• databases created with AllegroCache 2.1.0 will be version 9 databases

• version 8 databases can be opened and used with AllegroCache 2.1.0 and those 
databases will remain version 8 databases.

• If you use save-database to save a version 8 database and then in AllegroCache 2.1.0 
use restore-database to reconstruct that database then that database will continue to 
be a version 8 database.

• to turn a version 8 database into a version 9 database run the 
(upgrade-index-type) function while the database is open in standalone 
mode.   This function will do nothing unless it's run in a version 8 database.

• The expression cursor functions will signal an error unless the database version is at 
least 9

Lisp Multiprocessing
In this section we’ll describe how to use AllegroCache with an application that takes 
advantage of Lisp’s own threading system (which is officially called the Lisp 
Multiprocessing System).

The most important rule is that only one thread at a time should be using a given 
database connection.  Using a database connection includes

• reading or writing the slot of a persistent object
• locating  a persistent object from an index
• commit or rollback
• creating a persistent object
• deleting a persistent object

You can be sure that threads don’t overlap their use of a connection through the use of 
locks.  If this is too inconvenient you can create a pool of database connections and have 



AllegroCache 3.1.0 53

each thread pick a connection out of the pool for its exclusive use, returning the 
connection to the pool when the thread is finished.

When running an AllegroCache program the variable *allegrocache* should be bound to 
the database connection.   This allows you to call make-instance for example without 
specifying a database connection to use should make-instance have to create a persistent 
object.   Thus if you want a thread to use AllegroCache be sure to bind *allegrocache* 
when you start the thread.

When a persistent object is created it belongs to the database connection which was used 
to create it.   If you just have one database connection and it’s open, then you can treat 
persistent objects  just like transient objects.   However if  you have multiple connections 
open then you have to be very careful to not confuse persistent objects that belong to 
different connections.   It’s even possible to have two different copies of the same 
persistent object in the Lisp heap, each copy belonging to a different connection.

Bulk Loading
 AllegroCache is tuned for the typical workload which is a mixture of reading objects 
from the database, changing values of slots and creating new objects.   A different and 
important workload is that of adding a massive number of objects to the database.  We 
call this workload: bulk loading.

 Bulk loading usually occurs when you first create a database.  It can also occur if your 
application periodically adds a large amount of data to the database.

 What characterizes our special bulk loading mode is the addition of new objects with 
indexed slots and the lack of querying about information in those objects until the bulk 
loading is complete.    Adding objects without indexed slots does not require the special 
bulk loading mode to run efficiently.

 What makes bulk loading slow under the normal AllegroCache settings is the building of 
indexes for the new objects.  If the index values added are randomly distributed then the 
action of adding values to the index btrees will tend to touch every btree page.  If the size 
of the btree is much larger than the size of the memory cache (specified by :class-cache-
size when the database is opened) then AllegroCache will spend most if it's time reading 
and writing from the disk when adding objects and indexing them.  When AllegroCache 
is in bulk loading mode the addition of the index values to the btrees is delayed until bulk
mode finishes with the result being that far fewer disk reads and writes are necessary to 
update the index.

  Beginning with version 2.1.3 bulk loading is supported in client/server mode as 
well as standalone mode.  
 



AllegroCache 3.1.0 54

 Bulk loading begins when the program calls (commit :bulk-load :start). It 
continues until the program calls (commit :bulk-load :end). Between the start and 
end of bulk loading there will usually be many commits (perhaps a commit after each 
10,000 objects are added). In the intermediate commits the :bulk-load argument is either 
not given, or is given with the value :start, both having the same effect of continuing the 
bulk load operation.

 Efficient bulk load requires more than just putting AllegroCache into bulk loading mode. 
Below we show an example of creating and bulk loading records of class crecord which 
has three indexed slots.  The indexed slots are filled with random values thus making 
normal indexing operations slow.

 We've used this code to build a billion object database.  What's particularly noteworthy 
about this function is that the cost per object added is the same from the first object added
to the billionth object added.  This is a very desirable property as it says that the size of 
your database is only limited by the amount of disk space you have available. After the 
code we'll describe in detail why this function was written the way it was.
    

(defpackage :user (:use :db.ac :db.ac.utils))

(defclass* crecord ()
  ((cell-id)
   (mobile-id     :index :any)
   (called-party-no :index :any)
   (calling-party-no :index :any)))

 
(defun bulk-build (count)
  ;;
  ;; create a new database and add count crecord objects to that
  ;; database
  ;;
  (sys:resize-areas :old (* 100 1024 1024))
  (setf (sys:gsgc-parameter :generation-spread) 20)
  (create-file-database "testa.db"

:class-cache-size (* 50 1024 1024)
:object-cache-size 11000)

  
  
  (commit :bulk-load :start)
  
  (let ((last-time (get-universal-time)))

  
    (dotimes (i   count) 
      (make-instance 'crecord :cell-id (random 1000000)



AllegroCache 3.1.0 55

     :mobile-id (random 1000000)
     :called-party-no (random 1000000)
     :calling-party-no (random 1000000))

      (if* (zerop (mod (1+ i) 10000))
 then (commit  :sync nil)
      (flush-object-cache :all t)
      (if* (zerop (mod (1+ i) 100000))

 then 
      (let ((this-time (get-universal-time)))

(format t "~14d  ~d secs~%" (1+ i) 
(- this-time last-time))

(setq last-time this-time))))))
  (commit :bulk-load :end)
  (close-database)
  )

The call to 
      (sys:resize-areas :old (* 100 1024 1024))
ensures that there is at least 100MB free in old space.  When btree buffers are allocated 
they are allocated in old space immediately thus we know that this application will soon 
be allocating space in old space.   If old space is grown as a result of objects being 
allocated then the program will end up with many small old spaces. The more old spaces 
the slower the garbage collection runs.  By preallocating a large old space we reduce the 
number of old spaces that will be created.  

 If you're not sure how much old space to allocate you can run your program once and use
(room t) to see how much old space was required.

The call to
    (setf (sys:gsgc-parameter :generation-spread) 20)
increases the time objects stay in new space before they are moved to old space.  The 
default generation spread is 4. We do this because in this function we will be creating 
10,000 objects and then committing after which point we don't need those 10,000 objects 
any longer.   If some of those objects are moved to old space then getting rid of them 
would require a global gc.  Thus by setting the generation spread high we can reduce the 
likelihood that any of these 10,000 objects get moved to old space.

We create the database here
    (create-file-database "testa.db"

:class-cache-size (* 50 1024 1024)
:object-cache-size 11000)

During the building phase it's a good idea to specify as large a class cache size as you can.
We ran this on a 64-bit machine with 2gb of memory so 50Mb of cache per btree is not 
going to be a problem. In this particular example all of the index values are fixnums and 



AllegroCache 3.1.0 56

that triggers special code in AllegroCache which bypasses using btrees to store index 
values until the last step.  Thus in this test case we don't need a very large btree cache and 
even 50Mb is excessive.

We want to keep the object cache small as well. We'll be creating many objects and then 
never looking at them again.  Thus we don't need a large object cache.  We specify a size 
of 11000 in the create-file-database since we'll be committing after every 10,000 objects 
are created.

The call to
  (commit :bulk-load :start)

does a commit (but we've done nothing so no changes are saved) and then it puts 
AllegroCache into bulk loading mode.

After every 10,000 objects have been created we call
    (commit  :sync nil)
This commit causes the 10,000 newly created objects to be written to the btree buffers in 
memory.  Since we specified :sync nil all of the btree buffers won't necessarily be written 
to the disk.   This speeds up the commit operation but if the application or machine 
should crash the database files would likely be inconsistent.  Thus we only specify :sync 
nil here because we know that in this case if the application doesn't finish running we'll 
just delete the database and start over again.

The next function called is
        (flush-object-cache :all t)
this is optional and is only done to increase performance.  We know that our program isn't
going to reference (any time soon) any of the 10,000 objects in the cache we just 
committed.  So we tell AllegroCache to try to remove them all from the cache. 
AllegroCache can only remove an object from the cache if it can prove that there are no 
references to the object from any place in the lisp heap and this will be determined after 
the next garbage collection takes place. Without the call to flush-object-cache the process 
of removing objects from the cache would still take place (because on database open we 
specified that we wanted the object cache to hold only 11,000 objects).  However the 
process of evicting objects from the table would be much more gradual and it would 
involve many scans of the object table.  Therefore calling flush-object-cache speeds up 
the eviction process.

Every 100,000 objects we print out the total object count and the time taken to build and 
commit those 100,000 objects.    What we look for is the time to commit to remain 
constant or to grow very very gradually.   This is necessary in order to be able to create a 
large number of objects in a reasonable amount of time.

In our example above this is the information printed for the first 4 million objects created:



AllegroCache 3.1.0 57

cl-user(6): (bulk-build 50000000)
        100000  5 secs
        200000  4 secs
        300000  4 secs
        400000  4 secs
        500000  5 secs
        600000  4 secs
        700000  4 secs
        800000  5 secs
        900000  4 secs
       1000000  5 secs
       1100000  4 secs
       1200000  4 secs
       1300000  4 secs
       1400000  4 secs
       1500000  5 secs
       1600000  4 secs
       1700000  5 secs
       1800000  5 secs
       1900000  4 secs
       2000000  4 secs
       2100000  5 secs
       2200000  4 secs
       2300000  4 secs
       2400000  4 secs
       2500000  5 secs
       2600000  4 secs
       2700000  4 secs
       2800000  4 secs
       2900000  5 secs
       3000000  4 secs
       3100000  4 secs
       3200000  4 secs
       3300000  5 secs
       3400000  5 secs
       3500000  4 secs
       3600000  4 secs
       3700000  5 secs
       3800000  4 secs
       3900000  4 secs
       4000000  5 secs

We've let that build process run up to a billion objects and the time per 100,000 object 
still remains constant.

To see what the numbers look like when the building process is not going well remove 



AllegroCache 3.1.0 58

the call to (commit :bulk-load :start) from our example function.  Now the 
build will be done in the normal AllegroCache mode:

cl-user(4): (bulk-build 50000000)
        100000  9 secs
        200000  9 secs
        300000  8 secs
        400000  9 secs
        500000  9 secs
        600000  9 secs
        700000  9 secs
        800000  9 secs
        900000  10 secs
       1000000  8 secs
       1100000  10 secs
       1200000  9 secs
       1300000  10 secs
       1400000  9 secs
       1500000  10 secs
       1600000  10 secs
       1700000  9 secs
       1800000  9 secs
       1900000  10 secs
       2000000  9 secs
       2100000  11 secs
       2200000  9 secs
       2300000  16 secs
       2400000  13 secs
       2500000  19 secs
       2600000  19 secs
       2700000  23 secs
       2800000  23 secs
       2900000  29 secs
       3000000  33 secs
       3100000  46 secs
       3200000  36 secs
       3300000  38 secs
       3400000  43 secs
       3500000  49 secs
       3600000  51 secs
       3700000  56 secs
       3800000  53 secs
       3900000  57 secs
       4000000  57 secs

You'll note that it starts running slower than in bulk load mode. That is because 
AllegroCache is filling in the index btrees right away rather than waiting until the end of 



AllegroCache 3.1.0 59

bulk load mode.   Thus this slowdown is expected.   What is bad is that the cost per 
100,000 objects starts to grow when the total count reaches 2.3 million objects.  This is 
the point at which the index btrees start outgrowing their caches in memory.   As the 
btrees continue to grow and the cache size remains constant the odds of having to read a 
block from a disk grows and this means that the insertion process will continue to slow 
down.    

If you can run the application on a machine with a large amount of physical memory then 
you can specify a huge cache size and delay the point at which the size of the index btree 
exceeds the cache in memory. For example on a 64-bit machine with 16gb of memory you
could allocate 2gb per class cache and that would allow you to bulk load with all the btree
pages in the cache.

The call to
    (commit :bulk-load :end)
ends bulk loading and causes all index information stored in temporary files to be copied 
to the actual database index files.   This will be a time consuming operations if there are 
many millions of index entries to copy.

In summary AllegroCache, like other databases, works fastest if all the data is stored in 
memory.  This is accomplished in AllegroCache by specifying a class-cache-size that's 
larger than the largest btree in the database.

Too often you don't have the luxury of keeping the whole database in memory. When this 
happens you have to make optimal use of the memory that you can allocate to holding 
database pages.   If you know you would be inserting a lot of random data into an index 
then you should make use of AllegroCache's bulk loading mode to speed up the insertion
of that index information.

AllegroCache Utilities

In this section we'll describe functions that while strictly not part of AllegroCache are 
nevertheless useful for AllegroCache users.    We've put these functions and macros in a 
separate package:  “db.allegrocache.utils” or “db.ac.utils”. 

defclass*/defprinter

The syntax for defclass is rather verbose.     Creating a class where all slots have initargs, 



AllegroCache 3.1.0 60

initforms and accessors requires typing a large expression.   If you're doing a demo or just
exploratory programming this amount of typing can be a burden.

defclass* is a macro that allows you to define persistent classes in much the same way 
that defstruct allows you to define structures. 

For example

(defclass* foo () a b c)

is equivalent to

(defclass foo nil
          ((a :accessor a :initform nil :initarg :a)
           (b :accessor b :initform nil :initarg :b)
           (c :accessor c :initform nil :initarg :c))
          (:metaclass persistent-class))

defprinter is a macro which allows you to easily create print-object methods for 
persistent classes.

Using our foo class defined above we see the effect of using defprinter to define a print-
object method. 

cl-user(4): (setq x (make-instance 'foo :a 1 :b 2 :c 3))
#<foo oid: 12, ver 5, trans: nil,  modified @ #x724aa26a>
cl-user(5): (defprinter foo a c)
#<standard-method print-object (foo t)>
cl-user(6): x
#<foo [12]* 1 3>
cl-user(7): 

You can see that defprinter allow you to specify which slots should have their values 
printed as part of the printed representation of the object.  

It's also possible to tell defclass* to expand into a call to defprinter.

Here are the details on these two macros:

(defclass* classname (&rest supers-and-flags) &rest slots)

classname is the class being defined.  It is a symbol.

supers-and-flags is a combination of superclasses for the class being defined and flags to
be passed to the defclass* macro.   The superclasses are always first.   The flags are 
always keywords so that is how they are distinguished from superclasses.   For example 
you may have 



AllegroCache 3.1.0 61

(defclass* foo (bar baz :init nil :defprinter t) a b)
The flags are:

Flag Default Meaning
:conc-name nil If nil then accessors are given the same name as the slot 

name.  If true then accessors are given the name classname-
slotname.    The accessors can be overridden on a slot by slot
basis by specifying an :accessor in the slot definition.

:defprinter value of

*default-defprinter*

If true then defprinter is invoked and passed all the slots 
given in the defclass*

:init t If true then slots are initialized to nil.   The initform can be 
overridden on a slot by slot basis by specifying an initform 
in the slot definition.

:make nil If true then a make-classname macro is created which just 
turns into (make-instance 'classname ...)

:print value of

*default-print-defclass*-expansion*

If true then the resulting defclass is printed to standard 
output.

The slots are a list of slot definitions using the same syntax as found in defclass.   We 
allow two ways to specifying the slot definitions.

(defclass* foo () a b c)
(defclass* foo () (a b c))
The former is like defstruct and the latter is like defclass.    The defclass* macro is able to
distinguish which form you're using.

We've just be using symbols as slot definitions but you can use the full defclass syntax.

(defclass* foo () (a :index :any) (b :accessor bee :initform 3) 
c)

(defprinter classname &rest slots-names)
Defines a print-object method on classname which causes the values of the given slots to 
be printed when the object is printed.   The printed form looks like

cl-user(5): (defprinter foo a c)
#<standard-method print-object (foo t)>
cl-user(6): (make-instance 'foo :a 1 :b 2 :c 3)
#<foo [12]* 1 3>
cl-user(7): 

Where foo is the class name, the 12 in brackets is the object identifier (oid), and the 
asterisk after the brackets indicates that this object has modified in the current transaction.
Following all that are the values of the slots whose name were given in the defprinter call.



AllegroCache 3.1.0 62

Index
add-to-set............................................................................................................................27
AllegroCache Utilities.......................................................................................................59
Bulk Loading......................................................................................................................53
client-connections..............................................................................................................47
client-server Mode...............................................................................................................8
close-compressed-index-streams.......................................................................................50
close-database....................................................................................................................17
commit...............................................................................................................................41
compress-indexes...............................................................................................................40
compress-log-files..............................................................................................................46
connection-alive-p..............................................................................................................48
create-class-cursor..............................................................................................................20
create-expression-cursor....................................................................................................34
create-file-database............................................................................................................14
create-index-cursor.............................................................................................................31
create-map-cursor...............................................................................................................25
database..............................................................................................................................10
database-of.........................................................................................................................50
database-open-p.................................................................................................................17
db-object-oid......................................................................................................................30
db.ac.....................................................................................................................................3
db.allegrocache....................................................................................................................3
decode-object.....................................................................................................................48
defclass*.............................................................................................................................60
defclass*/defprinter............................................................................................................59
defprinter............................................................................................................................61
delete-instance....................................................................................................................18
delete-persistent-class........................................................................................................50
deleted-instance-p..............................................................................................................19
doclass................................................................................................................................20
doclass*..............................................................................................................................20
doset...................................................................................................................................27
encode-object.....................................................................................................................48
flush-object-cache..............................................................................................................47
free-class-cursor.................................................................................................................20
free-index-cursor................................................................................................................32
free-map-cursor..................................................................................................................26
index...................................................................................................................................27
index-count........................................................................................................................31
kill-client-connection.........................................................................................................48
last-transaction-number......................................................................................................42
map.......................................................................................................................................5



AllegroCache 3.1.0 63

map-count..........................................................................................................................24
map-map............................................................................................................................22
map-value...........................................................................................................................22
mark-instance-modified.....................................................................................................49
multiprocessing..................................................................................................................52
netdb-port...........................................................................................................................16
next-class-cursor................................................................................................................20
next-index-cursor...............................................................................................................32
next-map-cursor.................................................................................................................25
object identifier..................................................................................................................10
object-cache-size................................................................................................................46
oid......................................................................................................................................10
oid-to-object.......................................................................................................................29
oid-to-object*.....................................................................................................................29
open-file-database..............................................................................................................11
open-map............................................................................................................................21
open-network-database......................................................................................................16
package.................................................................................................................................3
persistent-class.....................................................................................................................3
previous-index-cursor........................................................................................................32
previous-map-cursor..........................................................................................................25
recover-from-log................................................................................................................45
recovery-times....................................................................................................................45
remove-from-map..............................................................................................................22
remove-from-set.................................................................................................................27
restore-database..................................................................................................................43
retrieve-from-index............................................................................................................28
retrieve-from-index-range..................................................................................................30
retrieve-from-index*..........................................................................................................28
retrieve-from-map-range....................................................................................................23
rollback..............................................................................................................................41
save-database.....................................................................................................................43
set...................................................................................................................................6, 27
set-count.............................................................................................................................27
set-member.........................................................................................................................27
standalone mode...................................................................................................................7
start-server..........................................................................................................................14
stop-server..........................................................................................................................16
transaction............................................................................................................................7
upgrade-index-type............................................................................................................52
with-transaction-restart......................................................................................................41
............................................................................................................................................47


	Introduction
	Package
	Creating persistent objects
	Indexes
	Maps
	Sets
	Transactions
	Standalone Mode
	Client-Server Mode
	Rollback to go Forward

	Database
	Object Identifiers
	Configuration: Standalone
	Configuration: client/server
	The API
	Standalone Configuration
	Client Server Configuration
	Both Configurations
	Summary of Operations
	Object Deletion
	Iteration
	Class Cursors
	Maps
	Map Cursors
	Sets
	Indexes
	Index Cursors
	Expression Cursors
	Compressed Indexes
	Transactions
	Saving and Restoring Databases
	Transaction Logs
	Database Recovery from Log Files
	Compressing Log Files

	Miscellaneous
	Where the Illusion Breaks Down
	Upgrading Databases
	AllegroCache versions 1.1.0 to 2.0.1
	AllegroCache version 2.1.0


	Lisp Multiprocessing
	Bulk Loading
	AllegroCache Utilities
	defclass*/defprinter


