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Wireless telecom companies have a serious problem.
Growth of new mobile subscribers has slowed, and
competing providers offer attractive packages and
incentives to lure customers from one another.  Con-
sequently, customer churn rate is at an all time high,
while companies struggle to increase Average Reve-
nue Per User (ARPU).  To reduce the churn and in-
crease ARPU, one has to analyze the usage patterns
and personal profiles of all customers and offer them
compelling pricing/feature packages before they
jump to competitors. But, this is easier said than
done, considering that a major mobile provider can
generate more than 100 million Call Detail Records
(CDRs) per month in one state alone.  Storing this
enormous volume of data, easily reaching tens of
terabytes over one year, is challenging enough.  It is
even harder to extract intelligence (such as calling
patterns) from it.

The intelligence community faces an even more
daunting task.  To track down criminal elements, it
needs to build a calling network (who calls whom
calls whom, etc.) from the billions of CDRs, then
search for specific calling patterns and do so in a
timely manner.  Traditional SQL databases are inef-
fective for such problems because calling networks
do not naturally fit into relational tables. Further-
more, intelligence mining is more a graph-matching
and pointer-chasing operation, rather different from
SQL set operations. Attempting to do it with SQL
databases requires continuous table joining and SQL
calls, and renders the process too slow to be useful.
One government agency resorts to mapping all the
data (stored in billions of RDF triples) into the mem-
ory of a super computer with many terabytes of RAM
before performing analyses. Simply rebooting the
system and reading the data into memory takes one
week.   But how many of us can afford such luxuri-
ous equipment?

BILLIONS OF RDF TRIPLES

The call network is just one type of semi-structured
information, unsuitable for relational databases.  By
most estimates, more than 85% of corporate data is
unstructured (e.g., Word documents, HTML pages,
etc.), not residing in any database.  Therein lies most

corporate knowledge, unintelligible without human
interpretation.  Simply converting such data into
XML documents and storing them in databases does
little to enhance knowledge understanding and its
application.

One emerging solution is to transform such data into
RDF triples (subject, predicate and object).  RDF
stands for Resource Description Framework from the
W3C Semantic Web working group, and is imple-
mented in XML.  It borrows heavily from early re-
search in knowledge representation and management.
The flexibility of RDF makes it suitable for repre-
senting any knowledge (be it CDR networks or con-
tact networks).  However, as shown previously, the
number of RDF triples can easily grow into mil-
lions or even billions for real-world applications,
making it difficult to process efficiently with tradi-
tional means.  Small wonder there is scarcely any
deployment of practical RDF applications.

Relational databases are inefficient for storing and
navigating RDF triples.  Object databases, while
better able to model RDF triples, still scale poorly
when the number of triples exceeds tens of millions.
We need a tool with very effective indexing mecha-
nisms and a high-speed Btree (or B+tree) to store,
retrieve and navigate huge numbers of triples.

HIGH-PERFORMANCE TRIPLE STORE

Franz has developed AllegroGraph specifically for
managing very large-scale RDF triples.  It employs 8
indices, each is stored on disk with either a B+tree or
an AVL tree.  The low-level API consists of only:
store-triple(s,p,o), get-triple([s],[p],[o]) and
read-file(uri).  It includes an expressive query lan-
guage, RDF Prolog, particularly suited for graph
search and graph matching over an RDF network. It
can find semantic relations between RDF nodes
automatically, using complex Prolog clauses as
needed without speed degradation.  For example, the
following RDF Prolog statement defines a father
relation on top of AllegroGraph:

(<-- (father  ?x  ?y)  (male  ?x) (q  ?x  !o:has-child  ?y) )

To test its scalability, two available large data sets,
the Lehigh University Benchmark and a movie and



actor database, were used. Using an AMD 64, 2 Ghz,
CPU machine with 16 GB of RAM, the burst rates of
parsing RDF and storing triples are:

This performance is almost an order of magnitude
faster than known non-memory-resident benchmark
results.  Retrieving RDF triples is just as fast.  On
average, the retrieval times are:

This remarkable result is achieved with 8 indices,
which adds a disk storage overhead of about 300
bytes per triple but offers unparalleled performance.

ALLEGROCACHE – OODB TOOL KIT

All the functions used to create AllegroGraph (such
as user-defined serialization, Hash Tables, B+trees,
AVL trees, etc.) are all part of an object database,
AllegroCache.  Rather than offering a monolithic
database system (like most commercial offerings),
AllegroCache makes its major functions available as
self-contained tools with simple APIs for program-
mers to customize the database system for their spe-
cial needs.  For example, storing and processing a
monotonic data set (such as stock transaction data
and most knowledge data) does not need full trans-
action capability and its attendant overhead.  A
B+tree is more efficient to use. On the other hand,
when full transaction integrity is required, Allegro-
Cache offers full ACID compliant transactions with
object-level locking.  To test its scalability, a billion
objects (each with 3 attributes) were created, then
randomly accessed.  Test #3 involves a schema up-
date (described later).  Overall, the performance of
AllegroCache is quite satisfactory.

ZERO IMPEDANCE MISMATCH

One of the hairier aspects of modern application pro-
gramming is the impedance mismatch between pro-
gramming languages and database access languages
(mainly SQL and its derivatives), both in language
syntax and semantics and in data types.  This neces-
sitates constant mapping of one data type to another
and switching language semantics within an applica-
tion, inevitably leading to errors and frustration.

Object databases go a long way to mitigate such im-
pedance mismatch, allowing programmers to focus
more on object persistence rather than on object de-
composition into rows and columns.  AllegroCache is

by far the most seamlessly integrated, with its data-
base query language the same as its Lisp program-
ming language.  For example, the code below creates
a PhonebookEntry database:

This code is no different from coding against in-
memory data, except a few database-specific state-
ments like open-file-database, commit, and
close-database.

DYNAMIC SCHEMA UPDATE

Changing a database schema is usually a very labori-
ous and time-consuming process, not to be attempted
casually.  AllegroCache, on the other hand, allows
programmers to change database schema at runtime.

Here, an existing object class, PhonebookEntry, is
redefined with an added attribute, Member, to store
all persons sharing the same phone number. Object
instances that were created and stored with the old
schema are automatically and quickly updated to the
new class definition when they are accessed.  The
ability to update the schema at runtime is tremen-
dously useful during application development when
the object and database design undergoes constant
evolution.  It is also very desirable when dealing with
domains, such as Bioinformatics, that are ambiguous
and continuously change.

For more information on AllegroCache, see
http://www.franz.com/products/allegrocache, or
contact  Steve Sears at +1 (510) 452-2000 x 154.

Test Index
# of 

Classes
Object Creation 

Time
Random Object 

Access Time
1 No 1 17.6 K objects / sec
2 Yes 3 10K objects / sec 13K objects / sec

3 Yes 3 (Update Schema) 9.7K objects / sec

(o p en - file -d a tab a se  "P h o n eb o o k ")  

(d e fc la ss  P h o n e b o o k E n try  ( )
  ((F irs tN am e  :in ita rg  :F irs tN a m e  :in d ex )
   (L as tN am e  :in ita rg  :L as tN am e :in d ex )
   (P h o n eN u m b e r :in ita rg  :P h o n e N u m b er : in d ex )
   (P o s ta lC o d e  : in ita rg  :P o s ta lC o d e  : in d e x ))
   (M e m b er : in ita rg  :M e m b e r)
  ( :m e tac lass  p e rs is ten t-c la ss ))

(d o c la ss  (o b j 'P h o n eb o o k E n try )
  (se tf  (M e m b er o b j)  
    (re tr iev e -fro m -in d ex  'P h o n eb o o k E n try  
      'P h o n eN u m b e r (P h o n e N u m b e r o b j)  :o id  t) ))

(c om m it)
(c lo se -d a ta b ase  * a lleg ro ca ch e *)

(open-file-database "Phonebook" 
                    :if-does-not-exist :create
                    :if-exists :supersede)

(defclass PhonebookEntry ()
  ((FirstName :initarg :FirstName :index)
   (LastName :initarg :LastName :index)
   (PhoneNumber :initarg :PhoneNumber :index)
   (PostalCode :initarg :PostalCode :index))
  (:metaclass persistent-class))

(make-instance 'PhonebookEntry :FirstName "John"
  :LastName "Doe" :PhoneNumber "510-452-2000" :PostalCode 94607)

(retrieve-from-index 'PhonebookEntry 'PostalCode 94607)
(doclass (obj 'PhonebookEntry) (print obj))

(commit)
(close-database *allegrocache*)

Btree Miss Btree Hit Query Cache

Time / Triple 30 x 10-6s 1.8 x 10-6s 0.3 x 10-6s

Size of Data Set < 200 million > 200 million
# of Triples / Sec 10,000 4,000


