
19/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Review

David

Margolies

29/16/2010

Summary 1

• A lisp session contains a large number of

objects which is typically increased by

user-created lisp objects

39/16/2010

• The user works with

– a read-eval-print loop which is provided as part

of the lisp session

– an editor (preferably a lisp-knowledgable editor)

• Writes code

– directly in the read-eval-print window

– in the editor from which code can be saved and

can be modified

49/16/2010

• Brings the code into the lisp world by

entering it directly to the read-eval-print loop

or by loading it from the editor or files

• Code loaded into lisp may be

– interpreted - loaded as source

– compiled before loading

59/16/2010

Summary 2
• Definitions written in Common Lisp can be

compiled.

• A Common Lisp compiler can be applied to files or

individual definitions

• Compiling a file of Common Lisp source code, say

myfile.cl, creates a file myfile.fasl

• (load "myfile.cl")

• (compile-file "myfile.cl")

• (load "myfile.fasl")

• (load "my-app2/my-other-file.cl")

• (load "c:\\program files\\acl62\\still-another-file.cl")

69/16/2010

• Compiling a file does NOT make it part of any lisp session

• A definition created by typing directly to the read/eval/print

loop does not create compiled code.

(defun my-func (arg)

(* 73 arg))

• The interpreted definition can be replaced in the same lisp

session by calling compile on the name of the function

(compile 'my-func)

• Incremental compilation while using Allegro CL both

compiles the designated code and loads the newly compiled

definitions into the current lisp session.

79/16/2010

Summary 3

• A lisp application written in Allegro CL can

be delivered as

– source code to anyone else who has a copy of a

compatible Common Lisp

– one or more compiled files to anyone else who

has the same version of Allegro CL for the same

kind of operating system

– a standalone application for use on the same kind

and similar version of operating system

89/16/2010

Format
cg-USER(43): (format t "Hi, I'm David")

Hi, I'm David

NIL

CG-USER(44): (format t

"~%Hi, I'm ~a"

’david)

Hi, I'm DAVID

NIL

CG-USER(45): (format

nil

"Hi, I'm ~a" ’david)

"Hi, I'm DAVID"

99/16/2010

Format cont’d
CG-USER(50):

(let ((radius 14))

(format

t

"~%The circumference of a circle with ~

radius ~d is ~%~f"

radius (* 2 pi radius))

(format t "~%The area of that circle is ~f"

(* pi (* radius radius))))

The circumference of a circle with radius 14 is

87.96459430051421d0

The area of that circle is 615.7521601035994d0

NIL

109/16/2010

Common Format Control

Arguments

• ~A prints any lisp object (strings without quotes)

• ~S prints any lisp object (strings with quotes)

• ~D prints a decimal integer

• ~F prints a float

• ~% prints a newline

• ~<return> ignores the <return> and any following

spaces

(format *standard-output* “~A ~5F ~A ~%” 5 pi 10)

5 3.142 10

119/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Conditionals

129/16/2010

Conditionals

• If

• when

• unless

• cond

• case

• ecase

139/16/2010

IF

• (If test-form then-form else-form)

(if (eql saved-symbol password)

(print “pass”)

(print “fail”))

• If the test returns non-NIL, executes the THEN part

and returns its value

• Else executes the ELSE part and returns its value

• ELSE part is optional

149/16/2010

Using if

(defun sign-name (number)

(if (> number 0)

’positive

’not-positive))

• Boolean test returns NIL (false) or true

• (If <test> <then> <else>)

159/16/2010

Using if, cont’d

(defun sign-name (number)

(if (> number 0)

“positive”

(if (= number 0)

"zero"

"negative")))

(sign-name 10) -> “positive”

(sign-name -1) -> “negative”

169/16/2010

Progn

• Compound statemement, equivalent to curly

braces {} in Java, C, C++.

• Example

> (if (> 3 2)

(progn (print 'a) (print 'b))

(progn (print 'c) (print 'd)))

A <<<< printed

B <<<< printed

B <<<< Return value

179/16/2010

Prog1 and Progn

Example
> (if (> 3 2)

(progn (print 'a) (print 'b))

(progn (print 'c) (print 'd)))

A

B

B

> (if (> 3 2)

(prog1 (print 'a) (print 'b))

(prog1 (print 'c) (print 'd)))

A

B

A

189/16/2010

WHEN

• (when test code)

• (when (eql saved-symbol password)

(open-the-vault)

(record-vault-contents)

(close the vault))

• Equivalent to (if test then)

• Except no ELSE allowed

• Multiple body forms permitted

199/16/2010

UNLESS

• (Unless test code)

(unless (equal string password)

(call-the-police))

• Equivalent to (when (not …) …)

209/16/2010

Compound Tests

• NOT: (not (> x 3))

• AND: (and (> x 3) (< x 10))

• OR: (or (> x 3) (< x 0) (= y 7) (< (+ x y) 5))

219/16/2010

Other Types of Tests

• Numeric comparisons: >, >=, <, <=, =

• Equality of objects: EQ, EQL, EQUAL

• Equality of strings: string=, string-equal

– (string-equal "Radar" "RADAR")

• Type tests:

– (typep x 'integer)

229/16/2010

COND

• Think of COND as if/elseif/elseif/elseif/endif

• Each clause has a test followed by what to do if that
test is true.

(cond ((= x 1)

(print 'single))

((= x 2)

(print 'twin)

(print “You WIN”))

((= x 3)

(print 'triplet))

(t

(print 'unknown)

(print “Too Bad”)

x))

239/16/2010

COND cont’d

• Tests are evaluated in sequence until the evaluation
of one of them returns true (ie not nil)

• The last test may be the symbol t

(cond ((= x 1) (print 'single))

((= x 2) (print 'twin)

(print “You WIN”))

((= x 3) (print 'triplet))

(t (print 'unknown) (print “Too Bad”) x))

249/16/2010

CASE

• Key-form is evaluated to produce a test-key

• match is established if the result of the

evaluation is eql to a key of the clause

• first element of final clause may be t or

otherwise, either of which assures a match
(case x

((1 5)(print ’odd)(print “less than 7”))

(2 (print 'two)(print 'twin))

((3 6 9)(print “multiple of 3”))

(otherwise (print ’ok)))

259/16/2010

Falling out of Case

• If no case is true, CASE simply returns NIL

without doing anything.

(case x

(1 (print 'single))

(2 (print 'twin))

(3 (print 'triplet)))

269/16/2010

Case Example 1

(defun accept-bid-1 ()

(format t "How many dollars are you offering ?")

(let* ((offer (read))

(counter-offer (+ offer 5))

(field-width

(1+ (length (format nil “~d”counter-offer)))))

(format t "Would you consider raising that to ~v,'$d ?"

field-width

counter-offer)

(case (read)

((y yes t ok) counter-offer)

(otherwise offer))))

279/16/2010

Case Example 2

(defun accept-bid-2 ()

(format t "How many dollars are you offering? ")

(let* ((offer (read))

(counter-offer (+ offer 5))

(field-width

(1+ (length (format nil "~d" counter-offer)))))

(if

(y-or-n-p "Would you consider raising that to ~v,'$d ?"

field-width

counter-offer)

counter-offer

offer)))

289/16/2010

ECASE

• If no case is true, ECASE signals an error.

(ecase x

(1 (print 'single))

((2 4)(print 'twin))

(3 (print 'triplet)))

"Error, 7 fell through an ECASE form. The valid

cases were 1, 2, 4, and 3.

299/16/2010

Typecase

(typecase some-number

(integer (print ‘integer))

(single-float (print ‘single-float))

(double-float (print ‘double-float))

(otherwise (print ‘dunno)))

309/16/2010

Etypecase

• Equivalent to TYPECASE with the otherwise

clause signalling an error

(etypecase number

(integer (print ‘integer))

(single-float (print ‘single-float))

(double-float (print ‘double-float)))

319/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Iteration and Recursion

329/16/2010

dolist

• To iterate over elements of a list:

(defvar *lunch* '(apples oranges pears))

(dolist (element *lunch*)

(print element))

(dolist (element *lunch* ‘done)

(print element))

339/16/2010

dotimes

Used to iterate over a some number of

consecutive integers

(dotimes (I 5)

(print I))

(setq lunch (list 'apples 'oranges 'pears))

(dotimes (I (length lunch))

(print (nth i lunch)))

349/16/2010

dotimes with return value

>(dotimes (I 4)

(format t “<~D>” i))

<0><1><2><3>

nil

> (dotimes (i 4 2)

(format t "<~D>" i))

<0><1><2><3>

2

359/16/2010

do

• A very general iteration method.

• Example: iterate by two’s

(do ((I 0 (+ I 2))

(J 7 (+ J .5)))

((> (+ I J) 50) ‘done)

(print I)

(terpri))

369/16/2010

Do Syntax

(do ((variable1 init1 step1)

(variable2 init2 step2)

…)

(endtest result)

Body)

• Both dotimes and dolist could be

implemented using do

379/16/2010

Loop Without Keywords

(let ((I 0))

(loop

(when (> I 10) (return))

(setq I (+ I 1))

(print I)))

• Loop iterates forever (unless you call
RETURN)

389/16/2010

Loop with Keywords

CG-USER(14): (loop for i from 1 to 7

collect (* i i))

(1 4 9 16 25 36 49)

CG-USER(15): (loop for j from 0 to 3

by .5

sum j)

10.5

399/16/2010

Iteration with Loop

• Many many options

– give lots of power

– can be misused

• For example, can collect, sum, maximize and

minimize all in one loop

• Won’t cover the full range of loop keywords

in this class

409/16/2010

Looping using from/to

(defun mycount (start-num end-num)

(loop

for num from start-num to end-num

do

(print num)))

(mycount 1 4)

1

2

3

4

NIL

419/16/2010

Iteration without loop

• You can write code using do, dotimes, and

dolist to accomplish the programming tasks

addressed by loop keyword capabilities

• For example, you can write code to collect,

sum, maximize and minimize

429/16/2010

Summing a List of Numbers

• You can accumulate and return a sum

(defun sum (list)

(let ((result 0))

(dolist (item list)

(setq result (+ result item)))

result))

(sum '(1 2 3 4))

⇒10

439/16/2010

Finding the Maximum

• You can search for a maximum value

(defun maximum (list)

(let ((result (first list)))

(dolist (item (rest list))

(when (> item result)

(setq result item)))

result))

(maximum '(1 2 3 4))

⇒4

449/16/2010

Iteration using conditionals

• You can “do” the body only under certain

conditions

(defun print-even-numbers (list)

(dolist (item list)

(if (evenp item) (print item))))

(print-even-numbers '(10 1 2 4 7 8))

459/16/2010

Recursion

• What is recursion ?

– A special kind of iteration

– a procedure in which a function calls itself

• A recursive function

– terminates if some condition is met

– calls itself with different arguments if condition is not

met

469/16/2010

Recursion cont’d
(defun find-even (list)

(let ((item (first list)))

(if (and (numberp item)(evenp item))

item

(find-even (rest list)))))

(find-even '(5 7 8 9 11))

(trace find-even)

(find-even '(5 7 8 9 11))

Note problem: what if no evens?

479/16/2010

Recursion con’d, trace output

CG-USER(14): (find-even '(5 7 8 9 11))

0[1]: (FIND-EVEN (5 7 8 9 11))

1[1]: (FIND-EVEN (7 8 9 11))

2[1]: (FIND-EVEN (8 9 11))

2[1]: returned 8

1[1]: returned 8

0[1]: returned 8

8

489/16/2010

Recursion cont’d 2

(defun find-even (list)

(if list

(let ((item (first list)))

(if (and (numberp item)(evenp item))

item

(find-even (rest list))))))

(find-even '(5 7 8 9 11))

(find-even '(5 7 9 11))

(find-even nil)

499/16/2010

Recursion Components

(defun find-even (list)

(if list

(let ((item (first list)))

;; First, see if you are done.

(if

(and (numberp item)(evenp item))

item

;; If not, call the same

;; function with a different

;; argument list.

(find-even (rest list)))))

509/16/2010

Factorial

(defun factorial (N)

;; First, see if you are done.

(if (< N 2)

N

;; If not, call the same function

;; with a different argument list.

(* N (factorial (- N 1)))))

(factorial 4)

(trace factorial)

(factorial 4)

519/16/2010

factorial con’d, trace output

CG-USER(17): (factorial 4)

0[1]: (FACTORIAL 4)

1[1]: (FACTORIAL 3)

2[1]: (FACTORIAL 2)

3[1]: (FACTORIAL 1)

3[1]: returned 1

2[1]: returned 2

1[1]: returned 6

0[1]: returned 24

24

529/16/2010

List Recursion

• Lists are recursive data structures

• Most algorithms on lists are recursive

(defun my-copylist (list)

(if (or (not list) (not (listp list)))

list

(cons (my-copylist (first list))

(my-copylist (rest list)))))

(my-copylist '(5 6 7 8))

539/16/2010

List Recursion cont’d 1
(defun sum-em (somelist)

(if (null (rest somelist))

(first somelist)

(+ (first somelist)

(sum-em (rest somelist)))))

(defun sum-em2 (somelist)

(let ((first-el (first somelist))

(rest-of-em (rest somelist)))

(if (null rest-of-em)

first-el

(+ first-el (sum-em2 rest-of-em)))))

549/16/2010

List Recursion cont’d 2

(defun sum-em3 (somelist accumulator)

(let ((rest-of-em (rest somelist)))

(if

(null rest-of-em)

(+ accumulator (first somelist))

(sum-em3 rest-of-em

(+ accumulator

(first somelist))))))

559/16/2010

List Recursion cont’d 3

(defun sum-em4 (somelist)

(let ((sum 0))

(dolist (el somelist)

(setf sum (+ sum el)))

sum))

(defun sum-em5 (somelist)

(let ((sum (first somelist)))

(dolist (el (rest somelist) sum)

(setf sum (+ sum el)))))

569/16/2010

List Recursion cont’d 4

(defun sum-em6 (somelist)

(let ((first-el (first somelist)))

(if (null first-el)

0

(if (numberp first-el)

(+ first-el

(sum-em6 (rest somelist)))

(+ (sum-em6 first-el)

(sum-em6 (rest somelist)))))))

(sum-em6 ‘((1 2 3) 7 (4 5 6)))

579/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Nonlocal Exits

589/16/2010

non-local exits

• a non-local exit is a return to the caller from

the middle of some construct, rather than the

end

• return, return-from, block

• catch, throw

599/16/2010

Return-from is a lot like GOTO

• Return-from requires a block tag argument.
(defun try1 (item)

(let ((result nil))

(block search

(dolist (object *objects*)

(when (matchp item object)

(setq result object)

(return-from search nil))))

(print result)))

• Block gives you a named place to go to.

609/16/2010

Return-from cont’d

(defun try2 (item)

(let ((result nil))

(dolist (object *objects*)

(when (matchp item object)

;;call to setq below is useless

(setq result object)

(return-from try2 nil)))

;;if called, the line below will print nil

(print result)))

619/16/2010

block and return-from

• block establishes a named context

• name is a symbol (might be the symbol NIL)

• the normal return is value of the last form of

the block

• return-from allows early return, second arg is

value to return

629/16/2010

return

• Return from a block named nil

• do and other do<something> iterators create

a block named nil around the code body

(defun try (item)

(dolist (object *objects*)

(when (matchp item object)

;; Return from the dolist:

(return object))))

639/16/2010

return cont’d

(defun try3 (item)

(do* ((how-many (length *objects*))

(index 0 (1+ index))

(object (nth index *objects*)

(nth index *objects*))

(match-found nil))

((or (setf match-found (matchp item object))

(>= index how-many))

match-found)))

649/16/2010

catch and throw
(defun alpha (arg1 arg2)

(if (<= arg1 arg2)

(throw 'spaghetti)))

(defun beta (recorded-average score handicap)

(catch 'spaghetti

(alpha (+ score handicap) recorded-average)

'terrific))

(beta 100 90 20) -> TERRIFIC

(beta 100 70 20) -> nil

659/16/2010

Catch and throw example

(defun catch-test (n)

(catch 'location

(prin1 "before thrower call")

(terpri)

(thrower n)

(prin1 "after thrower call"))

(terpri)

(prin1 "after catch frame")

t))

(defun thrower (n)

(if (> n 5) (throw 'location)))

669/16/2010

Catch and throw example 2

When THROWER throws to location, forms after the call to thrower in

the catch frame are not executed

cg-user(42): (catch-test 10) ;; THROWER will throw

"before thrower call"

"after catch frame"

t

cg-user(43): (catch-test 0) ;; THROWER won't throw

"before thrower call"

"after thrower call"

"after catch frame"

t

cg-user(44):

679/16/2010

catch and throw cont’d

• tag

– is customarily a symbol

– should not be a number

• establishes a catch block named with that

object

• first argument of throw is the catch tag,

second is the value to return.

• Throw doesn’t need to be done in lexical

scope of catch.

689/16/2010

Packages

• A Lisp package

– is a namespace for related functionality

– establishes a mapping from names to symbol

• There is always a current package which is
the value of the Common Lisp symbol
package

• a symbol in the current package can be
referenced by its name

• a symbol accessible in the current package
can be referenced by its name

699/16/2010

Packages cont’d 1

• a symbol accessible in the current package
can be referenced by its name

• a symbol which is not accessible in the
current package can be referenced by
prefixing a package qualifier to its name

• the Common Lisp symbol *package*, which,
like other symbols specified by the Common
Lisp standard, is in the Common Lisp
package and can always be referenced with
common-lisp:*package* and cl:*package*

709/16/2010

Packages cont’d 2

• packages have a kind of inheritance by which
within any package the symbols of some
other packages designated to be available
externally can be referenced without a
package qualifier

• if the current package is package a and
package a “uses” package b, then the symbols
of package b do not need package qualifiers

• most packages “use” the Common Lisp
package

719/16/2010

Packages cont’d 4

• Every Common Lisp implementation must
provide the packages

– COMMON-LISP: a package for ANSI
Common Lisp symbols; you can’t add to it or
change it

– COMMON-LISP-USER: a package for user’s
symbols

– KEYWORD-PACKAGE for symbols that are
used as markers

729/16/2010

Packages cont’d 5

• The keyword package is for symbols used
as markers

• a symbol in the KEYWORD package

– is printed with a : (but nothing else) before the
characters in the symbol’s name

 :from-end

 :test

– is self-evaluating

739/16/2010

Packages cont’d 6

• The initial value of cl:*package* is

– COMMON-LISP-USER except in the Allegro
CL IDE

– COMMON-GRAPHICS-USER when using the
IDE

• The COMMON-LISP-USER package uses
the COMMON-LISP package, as does
COMMON-GRAPHICS-USER

749/16/2010

Getting package information

CL-USER(1): *package*

#<The COMMON-LISP-USER package>

CL-USER(2): (package-nicknames *package*)

("CL-USER" "USER")

CL-USER(3): (find-package :user)

#<The COMMON-LISP-USER package>

CL-USER(4): (package-name

(find-package :cl-user))

"COMMON-LISP-USER"

CL-USER(5): (package-use-list

(find-package :cl-user))

(#<The COMMON-LISP package>

#<The EXCL package>)

759/16/2010

Getting package information 2

CG-USER(1): *package*

#<The COMMON-GRAPHICS-USER package>

CG-USER(2): (package-nicknames *package*)

("CG-USER")

CG-USER(3): (find-package :cg-user)

#<The COMMON-GRAPHICS-USER package>

CG-USER(4): (package-name (find-package :cg-user))

"COMMON-GRAPHICS-USER"

CG-USER(5): (package-use-list (find-package :cg-user))

(#<The COMMON-LISP package> #<The EXCL package>

#<The ACLWIN package>

#<The COMMON-GRAPHICS package>)

769/16/2010

Creating a package

CG-USER(6): (defpackage :my-first-package)

#<The MY-FIRST-PACKAGE package>

CG-USER(7): (package-use-list

(find-package :my-first-package))

(#<The COMMON-LISP package>)

CG-USER(8): (in-package :my-first-package)

#<The MY-FIRST-PACKAGE package>

MY-FIRST-PACKAGE(9): (defun my-function (a b)

(* a b))

MY-FUNCTION

MY-FIRST-PACKAGE(10): (my-function 2 3)

6

779/16/2010

Creating a package cont’d

MY-FIRST-PACKAGE(11): (describe 'my-function)

MY-FUNCTION is a SYMBOL.

It is unbound.

It is INTERNAL in the MY-FIRST-PACKAGE package.

Its function binding is

#<Interpreted Function MY-FUNCTION>

The function takes arguments (A B)

MY-FIRST-PACKAGE(12): (in-package :cg-user)

#<The COMMON-GRAPHICS-USER package>

CG-USER(13): (my-first-package::my-function 3 5)

15

789/16/2010

Packages cont’d 7

• Every symbol in a package

– is either an internal symbol of that package or
an external symbol of that package

– can be referenced with :: between the package
qualifier and the symbol name

• An external symbol

– Is part of the package's public interface

– Has been exported from that package.

– Can be referenced with a single colon between
the package qualifier and the symbol name

799/16/2010

Packages cont’d 8

• It is advisable that every file of lisp code
have exactly one call to in-package and that
the call to in-package be at the top of the
file, preceded only when needed by a call to
defpackage

• Applications should have their own
packages

809/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Basic Lisp Development in the IDE

819/16/2010

Class Info

• One 2-hour presentation each week

• Lecture notes and homework available,

online at http://www.franz.com/lab/

• One-on-one help via email at

training@franz.com

