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Abstract.  

An RDF (Semantic Web) Database is a thin layer on top of a Di-

rected Graph Database.  Data stored in a linked graph is very different 
from data stored in a table, and the storage has different strengths. Al-
legroGraph RDFStore is a high-performance, persistent RDF graph 
database.  In this paper, we first present AllegroGraph's existing capa-
bilities for 2D proximity queries using geospatial indexing.  This leads 
to an important digression – our position on geo encoding and seriali-
zation.  We then describe our ongoing work extending to 3D and 4D 
to support moving objects (MOBs) with efficient cursors on MOB 
tracks.  Finally, we posit five classes of MOB queries with increasing 
difficulty. 

Introduction 

Combining geospatial and temporal reasoning in a single query framework seems an 
important capability for the Semantic Web.  Applications are obvious for the intelli-

gence community, for logistics control, for social networking applications, and else-
where.  An application that must reason efficiently about events that happen in and 
paths that traverse through both time and space must have capabilities that can deal 
with them together. 

 
We see an active interest in geospatial computing in the Semantic web community.  

A prominent example is the Linked Data initiative that has the geonames database as 
one of the central data sources pointed to by many other data sources.  The geospatial 
community also shows more and more interest in RDF and semantic technologies.  
The National Map project is one of the examples where we see how the experts in the 
field try to come up with ontologies that will allow better use of the information in 
various data sources. 

 
But curiously, there is hardly any interest in dealing with time in the Semantic Web 

community.  The W3C site shows no activity and the temporal reasoning community 
rarely considers RDF.  

 



It follows that there is also not much interest apparent in the combination of geo-
spatial and temporal reasoning in one computational framework.  Recently in January 
of 2009, the National Science Foundation held an expert meeting to gauge whether 
there is interest in the academic arena to do some more research in this area. 

 
The AllegroGraph RDF database has supported basic temporal reasoning and 2D 

geospatial querying for two years, but recently we engaged projects that pushed the 
representation requirements in unexpected ways.  One project deals with AIS vessel-

tracking data and the other deals with GPS tracking data for cell phone users.  The 
current separate facilities for 2D geospatial indexing and temporal indexing could not 
in combination provide sufficient efficiency to deal with moving objects (MOBs) on a 
large scale.  Consequently, we started a research project for direct indexing of 3D and 
4D data.  This paper reports some of our findings and ongoing development. 

A Position Statement about Geo External Syntax 

We have several observations about data representation.  It is useful to separate the is-
sues of internal representation from external representation(s), i.e. serialization for-

mats.  
 

It is frequently the practice, probably inherited from relational databases, of storing 
longitude, latitude, optionally altitude and time, each in a separate triple.  These corre-
spond to the separate columns in a RDB.  We show below that this is grossly ineffi-
cient for locality queries, and can result in O(n^2) or worse performance comparing 
the size of the database against the number of data in the result set.  Our experience is 
that longitude/latitude and longitude/latitude/time (etc.) should be encoded and in-
dexed internally as a single RDF quantity.  (It is essentially never the case that one 
wants to retrieve or search any one of these data without retrieving them all together!)  
We have devised and will describe an indexing scheme that supports locality search 
with near-linear O(n) time in the number of entries in the result set. 

 
If geo or geo/time data should be combined into a single datum internally, they 

should also remain a single datum when externalized, e.g. in N-triples format.  RDF 
serialization places no requirements on triple ordering, and if a latitude-longitude pair 
was to become hugely separated in serialization it could be pernicious to have to re-
combine them during deserialization.  Therefore we make the following position 
statement: There should be standard RDF types for externalized geo data that allows 
geo and geo/time entry to be represented as a single lexical string.  As a specific straw 
proposal, externalization for geo position could be something like ISO6709, and ex-
ternalization of a MOB datum should be something like the concatenation of an 
ISO6709 string with an ISO8601 string.  (The details are important, of course, and 
remain to be worked out.) 
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How We Do 2D Geospatial in AllegroGraph 

This section will explain the principles that underlie our 2D, 3D, and 4D indexing.  
The section following will discuss a series of increasingly difficult query categories 
on an RDF based MOB database.  This taxonomy of queries is useful both to guide 
query implementation and in predicting performance. 

AllegroGraph is both an RDF triple store and a quad graph store.  It was designed 
to be hugely scalable (beyond core size).  The four parts of each triple [sic] SPOG can 
hold any kind of data.  All parts are efficiently linearly sortable.  Along with string re-
sources and literals, efficient specialized part encodings are supported: machine nu-
merical types (fixed and float) as well as other specialized types. These encoded types 
generally sort in the natural order of the encoding. 

 
Computer main memory and disk are both linearly addressable vectors.  Computers 

are really good at doing things that are linear.  It is well known that a vector of length 
n can be sorted in O(n log n) time and searched in O(log n) time.  AllegroGraph is de-
signed to exploit machine speed, despite scaling requirements, by keeping everything 
linear by maintaining multiple sorted indexes (e.g. SPOG, POSG, GOSP).  By select-
ing the proper index, triples variously related to others can be retrieved from a local 
region of that index.  

 
If a program wants to retrieve everything about 

<http://franz.com/employees#Jans>, all triples with this Subject are sorted together in 
the SPOG index.  All triples with Jans as the Object are together in the OSPG index. 

All triples with a particular Predicate e.g. 
<http://franz.com/employees#isSupervisorOf> are grouped together in the POSG in-
dex, sorted secondarily on Object.  Triples with particular values or one or more parts 
can be retrieved efficiently by a cursor that returns successive triples from one of the 
several indexes.  Specialized range cursors return all triples over a range of values for 
a particular part and particular value(s) of other part(s). 

 
Age, date and/or time, currency, phone numbers, stock prices, license-plate num-

bers, and barometric pressure are all linearly orderable.  But Cartesian and spherical 
(e.g. geospatial) coordinates in two or higher dimensions are not immediately order-
able and sortable. So the question is how to integrate these into the AllegroGraph lin-
ear indexing model? A particularly important problem is proximity search.  We want 
to optimize speed retrieving all triples with coordinates in a certain locality for vari-
ous kinds of localities: distance, bounding-box, and polygon. 



 

Fig. 1. 

Data in two dimensions could be sorted on the two separate dimensions in the ob-

vious way, either first on Y/latitude or X/longitude, or the reverse.  But this causes 
search time to increase with the product of the size of the data set and the eventual 
number of data to be returned, i.e. O(n^2).  As shown in the following diagram, the 
number of data points to be traversed increases with the product of the number of data 
points and the width of the region, or O(n^2) compared to the eventual number of data 
points to be returned. 

 

Fig. 2. 

We'd much rather just search the region of interest, reasonably bounded in two di-
mensions instead of just one. 

 

Fig. 3. 
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This yields scaling O(n), that is, a time proportional to the number of data points to 
be returned.  In particular, if n is the number of points within the search radius, the 
number of points that must be considered is 4n/pi.  

 
Within the requirements of AllegroGraph's fundamentally linear indexing, how can 

we avoid the unfortunate O(n^2) scaling?  R-trees and various other indexing schemes 
support efficient search of two- and higher-order localities. But if all the data won't fit 
in memory, paging performance of R-trees can be unpredictable and data management 

can be convoluted.  There is no obviously efficient way to reconcile 2-D and higher-
order R-trees with AllegroGraph’s linear indexing. We considered numerous fanciful 
ordering schemes, but devised nothing workable until we had the following break-
through.  Suppose we knew a little more about how we will use our data, specifically: 
The approximate size of typical regions to be searched.  We could sort the data into 
strips. 

 

Fig. 4 

In detail, a coordinate pair is converted to an unsigned integer.  The major sort or-
dinate (latitude) is split into strip number and modulus within that strip. This requires 
mere integer division with remainder.  (All this can be thought of as a variation on the 
technique of space-filling curves.)  

 

Fig. 5. 

If the desired search diameter is exactly the same as the strip width, we need trav-
erse short linear regions of just two strips.  For a circular region, the number of data 
traversed is only 4/pi the size of the result set.  AllegroGraph implements cursors as 
the mechanism for stepping through a range of data.  A specialized class of cursor 
called a concatenated cursor can step though a set of linear segments of the data, e.g. 
the regions of the two strips below.  It is assumed in these and all following examples 



that triples would be used with the MOB identity as the Subject, a Predicate denoting 
a geo position, and the geo data encoded in the Object. 

 

Fig. 6. 

If the desired search diameter is smaller than the strip width, short regions of only 
one or two strips need be traversed.  Efficiency stays high, falling off roughly linearly 
in the size of the over estimate in the expected search diameter.             

 

Fig. 7. 

If the search diameter is somewhat larger than the strip width, the ratio between the 
number of data that need be traversed and the size of the result set stays fairly con-
stant, but the number of separate linear strips that must be addressed and seeked in-
creases about linearly with the error in estimate.  As the number of separate linear re-
gions that must be traversed increases there is of course an additional cost (the strip 
regions are not adjacent on disk) but performance stays reasonable even with fairly 

large estimation errors. 

 

Fig. 8. 
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Finally, even if the search radius is much larger than the strip size, there is increas-
ing cost due to the number of separate strip segments that must be traversed, but the 
proportion of the number of data that must be tested compared to the number of data 
in the result set remains close to 4/pi. 

 

Fig. 9. 

To summarize our 2D implementation, it may be inconvenient to need to specify 
strip width in advance.  But performance is still reasonable even with an order of 
magnitude error.  In addition, if extremely different strip sizes are needed for different 
purposes, the data can be stored twice with different strip sizes.  A pedestrian wanting 
to locate a Starbucks has a different region of interest than routing software for the 
company trucks that deliver supplies. 

 
The two coordinates in 2D can be anything, e.g. pressure and temperature or dis-

tance and time.  This last possibility suggests extension to 3-D and beyond, particu-
larly MOB data encoding paths in latitude/longitude/time. 

Extending to  3D  and 4D Geospatial  

The 2D approach extends naturally to 3D and 4D, except data are sorted into 3D 
prisms instead of 2D strips.  The prisms are sorted with time as the most-significant 
ordinate, since it will be particularly useful tracking a continuous path in time. 

 

Fig. 10. 

 

Fig. 11. 

 



For a simple lon/lat/time proximity search, if the prism dimension is exactly the 
same as the search diameter, only short segments of four prisms must be traversed.  

 

Fig. 12. 

A bounding box in three dimensions would appear in the diagram above as a rec-

tangular solid. The spherical region in the above diagram implies some scaling be-
tween time and distance.  For a moving object this might be proportional to typical 
object velocity.  Alternatively, the notion of proximity could be defined as any posi-
tion within a given 2D radius and a particular time range; such a region would appear 
in the above diagram as a cylinder with a roughly vertical axis. 

 
Recall that AllegroGraph queries employ cursors to traverse a range of consecutive 

triples within one of the linearly-sorted indexes maintained by the triple store.  Many 
important queries on 3D (or 4D) data require following the track of a MOB through 
time, detecting other MOBs or fixed objects within a certain proximity of the first 
MOB.  This is provided by a special kind of compound cursor that encapsulates a dy-
namically-varying set of individual cursors, one for each prism that overlaps the 
search region at any particular time point.  As the compound cursor traverses through 
time (travelling upwards in the 3D diagrams of this paper) cursors for individual 

prisms are added or deleted from the compound as the search region overlaps or exits 
the individual prisms. The diagram below shows the prism regions considered at two 
specific time points while following a MOB single path. 
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Fig. 13. 

Several variations on this cursor are provided to facilitate the several kinds of 
query tasks outlined in the next section.  It is critical that these compound cursors be 
implemented with care and with minimal overhead so that MOB queries can execute 
efficiently.  

On the Difficulty of Various Categories of MOB Queries 

This paper concludes with an informal illustration of five classes of MOB queries.  
These different kinds of queries have increasing degrees of difficulty, where difficulty 
is some combination of the complexity of the query along with the total portion of the 
data that must be traversed in performing the query.  In judging difficulty, it is impor-
tant to remember that happiness is finding things that are linear, as seen in this 1961 
photo. 

 

Fig. 14. 

 



I. Simple proximity search that returns all 3D data with a certain proximity (or 

bounding box or other solid) around a given point. 

This case has already been covered above, and the figure is repeated for complete-
ness. 

 

Fig. 15. 

II. Given two particular MOB paths, determine if and when they were ever 

within a certain lat/lon/time distance.  

This is best implemented by following the two tracks in parallel through time, repeat-
edly checking distance.   The several prisms containing the regions around each track 
occur in local linear regions of the SPOG index.  A special kind of geo path cursor is 

implemented which can traverse through time, adding or removing prisms as the path 
shifts in longitude and latitude.  The two cursors need traverse only the portion of the 
data for the two given MOBs.  All such data for each MOB is sorted together in time 
order in the SPOG index, minimizing the region of disk that might be paged. 

 

Fig. 16. 
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III. Given a single MOB, detect any other MOBs that ever come within a certain 

proximity. 

This is somewhat similar to the previous, but the optimal implementation strategy is 
different.  It is best to traverse the single MOB path to detect any other MOBs in 
proximity.  Tracking along the MOB path in the SPOG index, those positions can be 
examined in the POSG index. Any data for other proximate MOBs will be in located 
nearby within the same several adjacent prisms in the POSG track being followed.  
Therefore, this search still requires only traversing the portion of the total data set 
along the single track of interest, although that path will be followed simultaneously 
in two different indexes. 

 
Fig. 17. 

IV. Find all occurrences of any two MOBs within a certain proximity. 

This clearly requires a traversal through the entirety of the MOB data using a different 
kind of cursor.  However, since MOB positions within a given proximity must be 
within a local region proximate within one of several adjacent prisms, the scan can be 
done with a single traversal through the data, examining a running window on the 
POSG index.  That region appears as a slab in the diagram below.  Maintaining the 
moving slab places larger demands on memory than the previous query classes, but 
these demands are reasonable unless the slab in unreasonably thick. 



 
Fig. 18. 

V. Detect potential Social Network Cliques between unknown MOBs, e.g. as 

evidenced by MOBs repeatedly being proximate in Place and Time, or being 
repeatedly suspiciously proximate in Place at different Times. 

 

Fig. 19. 

We don't know how to solve this because it isn't clear what we would be looking for, 
and it's difficult to find things when you don't know what you're looking for.  Auto-
matic detection of the unknown is an intriguing future research problem, hence (for 
now) the visual pun. 


