
Towards Sharing Source Code Facts Using Linked Data
Iman Keivanloo, Christopher Forbes, Juergen Rilling

Department of Computer Science and Software Engineering
Concordia University

Montreal, Canada

{i_keiv, c_forb, rilling@cse.concordia.ca}

Philippe Charland
System of Systems Section

Defence R&D Canada – Valcartier
Quebec, Canada

philippe.charland@drdc-rddc.gc.ca

ABSTRACT

Linked Data is designed to support interoperability and sharing of
open datasets by allowing on the fly inter-linking of data using the
basic layers of the Semantic Web and the HTTP protocol. In our
research, we focus on providing a Uniform Resource Locator
(URL) generation schema and a supporting ontological
representation for the inter-linking of data extracted from source
code ecosystems. As a result, we created the Source code
ECOsystem Linked Data (SECOLD) framework that adheres to
the Linked Data publication standard. The framework provides
not only source code and facts that are usable by both humans and
machines for browsing or querying, but it will also assist the
research community at large in sharing and utilizing a
standardized source code representation. The dataset has been
submitted and registered to ckan.net, under the SECOLD project
name, as the first source code Linked Data repository. In order to
maintain its relevance to the research community, we plan to
update the data set every four months.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Retrieval models; H.3.5 [Information Storage

and Retrieval]: Online Information Services – data sharing, web-

based services

General Terms

Documentation, Design, Experimentation, Standardization

Keywords

Linked Data, source code model, ontology, Semantic Web

1. INTRODUCTION
Mining software repositories and Internet-scale source code
search/analysis [8] are two active research areas. A commonality
between both domains is that they require major pre-processing
steps to allow for the sharing and integration of data to be mined
or searched. These steps are time-consuming tasks due to the
heterogeneity and constant changes of the data and structures.
XML-based exchange formats were developed over recent years
[9] to address these shortcomings. While these models work well
for smaller and stable datasets, automated integration and sharing
of large distributed heterogeneous data are beyond the capability
of XML and relational databases (DBs) [11].

Linked Data [1] is a sub-product of the Semantic Web and has
been promoted to address these interoperability/sharing issues for
open datasets. It enables both humans and machines to interpret
the data for mining, searching, and analysis purposes. Linked Data
introduces some basic techniques for data publication over
distributed environments like the Internet. First, each entity has a
unique identifier (i.e. URL). Second, the content must be
published using URLs and a common vocabulary. Although
Linked Data was defined only recently, it has already been
accepted in diverse domains (linkeddata.org) such as health care
[3] and mathematics [2]. This popularity is the result of two main
factors. First, contrary to the Semantic Web (in general), Linked
Data guidelines do not rely on heavy reasoning and complex
logic. Second, unlike data exchange mechanisms such as CSV,
XML, relational DBs, and web services, it does not require a pre-
defined data structure. Instead, it uses a common vocabulary set
where it is defined using machine understandable language
(contrary to pure XML). The vocabulary set models concepts and
relations in the domain of discourse.

In [11], Würsch et al. suggested two essential steps as a research
agenda for the software community: (1) design a common
vocabulary set (i.e. ontology); (2) create a unique identifier
generation schema for software repository entities. In our
research, we address both steps by providing a framework to
publish Linked Data sets for source code ecosystems. This enables
data sharing and integration for the software engineering
community at large. We devised a common vocabulary set for
source code ecosystems that covers most aspects of source code
such as revisions, presentation, syntax, and semantics. Along with
the ontological representation, an identifier generation schema
was defined. The schema guarantees that each real or abstract
entity will have its own unique identifier. Identifiers are
constructed by including entity type, revision, local identifier, and
some other basic information in their naming convention. The
resulting schema works in both distributed and centralized
environments. It does not require any synchronization mechanism
to guarantee identifier uniqueness. We call these Reproducible

Identifiers, since by following the schema, the same URL can be
generated for an entity at any time, by any given tool.

As part of our research, we developed a Linked Data publication
framework for source code ecosystems. This framework provides
the largest and first publicly available online Linked Data source
code dataset to software engineering researchers and practitioners.
The resulting Source code ECOsystem Linked Data (SECOLD)
consists of 1.5 billion triples. We have used a source code set [6]
as the input for our first release of SECOLD. The resulting dataset
provides line-level and statement-level granularity for the
presentation and syntax layers respectively. It is available in four
forms (1) online HTML (for humans) (2) online RDF/XML (for
code search tools) (3) dataset dump files (for research purposes)
(4) public query endpoint (for structural query).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0597-6/11/05... $10.00.

The ID schemas, common vocabulary, guidelines, data conversion
services, and the dataset are available online [10] at
http://aseg.cs.concordia.ca/secold.

The remainder of this paper is organized as follows: Section 2
briefly reviews Linked Data. Section 3 and 4 discuss how our
approach addresses the research challenges presented in [11]. The
Linked Data framework for source code ecosystems and its usage
scenarios discussed in Section 5 and 6.

2. LINKED DATA
Linked Data was introduced to ease data sharing and integration
in a distributed environment and be superior to XML-based
approaches [1, 11]. Each entity in the domain of discourse must
have a unique identifier (UID) in the form of a URI (Uniform
Resource Identifier). Note that UID, URI, and URL will be used
interchangeably throughout the paper. Facts about the resource
(i.e. entity) are represented using RDF statements, with each fact
statement being a triple of subject, predicate, and object. To make
this information inter-linkable and online, Linked Data mandates
that the URLs must be dereferencable. That is, clients (i.e.
humans and machines) must be able to fetch resource related data
via its URL (with http:// prefix). Using a HTTP header, a client
specifies the desired output format: HTML or RDF/XML. A
response must comprise the following: (1) Description and
Backlinks that contain all triples that have the URL as the subject
and object. (2) Equivalent URLs that point to the same entity (i.e.

owl:sameAs).

3. REPRODUCIBLE IDENTIFIERS
Software analysis research often relies on the use of several tools
to analyze the same artifact and gather different types of
information into a centralized dataset for final processing. For
example, a Javadoc analyzer can be used to extract information
related to the available documentation within the code repository
and a Java parser may be used for inheritance tree generation.
Both tools use the same resource (the source code) as input. The
key challenge for the results integration within a centralized
dataset is that the results adhere to a common naming and format
schema [11]. Inefficiency is highest when each tool produces
identifiers using random or tool specific generated result formats,
thus, making difficult or impossible to find the equivalent entities

in the other dataset. This scenario can be compounded if one uses
the same tool to parse a repository several times, which would
create several random identifiers for a single entity. An elegant
approach is to use the information available in the software
ecosystem (e.g. source code, version control, issue tracker) to
create stable identifiers. We call these Reproducible Identifiers,
which are independent from the producer tool’s logic and analysis
context. This results in a unique identifier for an entity in a
centralized or distributed environment. This addresses the second
research challenge in [11].

In order to create Reproducible Identifiers, we need anchors,
which are always available, and context independent. Given such
an anchor, a Reproducible Identifier is generated by concatenating
a set of predefined anchors. The anchor selection itself depends on
the entity type and is the most challenging step during the
software ecosystem Linked Data population. For example, in Java
source code analysis, it is not always possible to specify the type
(i.e. class or interface) of an imported type. Failure to choose a
stable anchor results in multiple ID for a single entity, which
would then violate the premise of Reproducible Identifiers. In
order to avoid this violation of stability and uniqueness of IDs, a
precise examination of the domain of discourse is required.

As part of our research, we introduce a novel ID generation
schema for source code ecosystems using available source code
(language independent) and versioning information. This schema
follows three rules to guarantee Reproducibility of the IDs in
practice. (1) Context independency rule: The anchors must not be
selected from the context of an analysis environment. (2) Right

granularity rule: the anchors must not be either too specific (since
this might cause instability) or too general (since this would
reduce the effectiveness of the triple repository indices). (3)
Abstraction level dependency rule: for each entity, there must be
some anchor referring to the abstraction or revision notion. This is
necessary when there are several levels of abstraction or revisions
of an entity. We have identified five patterns based on the above
three rules shown in Figure 1. Underlined terms correspond to
anchors, which vary based on the entity. The type is specified
using the vocabulary set (ontology). The Local ID is generated
from the entity itself using such information as line number,
project title, etc. Local IDs must also conform to the Right

granularity rule. For each type within the ecosystem, we have

First Level ID (e.g. asegpublisher project)

http://domain / resource / type / local ID

Project Level ID

http://domain / resource / type / project unique name / local ID

Programming Language Level ID

http://domain / resource / type / programming language name /

local ID

Snapshot Level ID

http://domain / resource / type / project unique name / snapshot

name / local ID

File (variation) Level ID

http://domain / resource / type / project unique name / snapshot

name / URL of the file / local ID

URL Generation Schema

Versioning Vocabulary (VERON)

Line

Variable FullyQualifiedName

VariableDeclarationStatement

hasContent

text

hasPosition

Offset or Line#

hasSourceCode

defines uses

Source Code Vocabulary (SOCON)

Semantic Layer

Syntax Layer

Presentation Layer

Variation

SnapshotChangeActivity

Commit

Project

defines

defines

has

has

LogicalFile

Contributer

represents

introduces

Common Vocabulary (partial)

1: package ca.concordia.ca.aseg.linkeddata;

2:

3: import java.util.ArrayList;

...

10: public class CodePublisher {

11: public void publish()

12: {

...

35: ArrayList vars=new ArrayList();

…

Sample Data

Project: asegpublisher

Revision #: 1 (or project release number/name)

Home: http://aseg.cs.concordia.ca/svn (or download

site)

Relative address: /linkeddata/CodePublisher.java

M
e
ta
 d
a
ta

hasLine

Meta Vocabulary (METON)

(File Level ID) http://domain/resource/vardefstmt/asegpublisher/ver1/http….codepublisher.java/22

(Prog. Lang. Level ID) http://domain/resource/fqn/java/java.util.ArrayList

(File Level ID) http://domain/resource/line/asegpublisher/ver1/http….codepublisher.java/35

Sample URL

hasSourceCode

uses

A

A

B

B

C

C

D

D

Figure 1. Part of the Common Vocabulary Set (top left) and the complete URL Generation Schema (top right) are shown. A set of

reproducable URLs for the given source code is shown. Following the bubbles reveals how they are created.

defined anchors and a Local ID which are available online. It
should be noted that, the first three schemas are independent from
versioning information. Regardless of the schema, all assigned
URLs are fixed. For example, changing a file location does not
require altering existing URLs, only starting facts affected by the
change will use the new URL.. However, if required, tractability
links can be established between the old and the recent URLs.

4. SOURCE CODE ECOSYSTEM MODEL
As stated in [11], another key research challenge in software
engineering is the need for a common vocabulary framework. In
what follows, we introduce SECON (Source code ECosystem
ONtology family) which was designed to address this specific
research community requirement. Our model covers source code
and versioning concepts as the core artifacts of a source code
ecosystem. SECON is built based on a layered model shown
(partially) in Figure 1. Due to space limitations, we describe only
the underlying rationale of our conceptualization in the domain of
discourse. The model and complementary documentation are
available online [10]. Our model covers every aspect of source
code such as source code presentation (e.g. tokens), syntax (e.g.
statements) and semantics (e.g. call graphs), including versioning
notion as the baseline. To the best of our knowledge, there is no
other (publicly available) comprehensive source code ontology
family.

Regardless of the application context of the model, versioning
information must be considered during data population to satisfy
the (unique) Reproducible Identifiers concept. It does not matter if
we receive the versioning information from a source control
module such as SVN, or a manually maintained revision set, like a
downloadable project release. As an example, consider a tool that

produces a URL for a Java expression such as streamHandle==-

1, implemented in one of the java.lang.Runtime class
revisions. In order to avoid an ambiguous or invalid result, the
URL must be unique to the particular statement, implemented in a
specific revision. Although one could argue that all revisions of
this statement are related to each other at some level, this does not
mean that they must have similar URLs in every level of
abstraction. In the conceptualization of our domain, we consider
revisions of statements as different entities despite the possibility
of them being connected to an abstract entity at a higher level of
granularity. Therefore, it is possible to include traceability links
between corresponding statements in different revisions with no
information loss using the proper tools.

4.1 Versioning Ontology Model (VERON)
There are many version control software systems such as CVS,
SVN, Git, etc. While providing fairly similar functionalities, they
differ significantly in the way they handle the actual versioning
task. For example, SVN adds a new record, called a commit, for
each set of changes, and assigns the changed files to the
committed entity. Alternatively, CVS adds a new commit record
for each changed file. Thus, the same container entity does not
exist for CVS. Capturing these implementation differences is the
main source of challenges during the ontology design. The
objective of our Versioning Ontology Model (VERON) was to
overcome these difficulties, by providing a design that creates the
output data that is uniformly independent of the input (e.g. a set of
manually maintained project releases). Existing versioning
ontologies [5] do not address the uniformity criterion. We avoided
tool-specific terms in VERON to increase its universality.

Revision is the core concept in VERON. It represents a specific
temporal instance of a file, which is identified by its physical file
address and revision number. A set of revisions constitute a
snapshot. Each commit has a set of change activities, while each
activity introduces a new revision to the system. Revisions of a
specific file must be connected to each other at a higher
abstraction level. The Logical File concept is introduced for this
purpose in our Meta Data Ontology Model for source code
ecosystems (METON). That is, all instances (i.e. revisions) of a
specific file belong to the corresponding logical file entity, which
can now be identified by its Internet address.

4.2 Source Code Ontology Model (SOCON)
SOCON is our comprehensive model for both code sharing and
analysis. In this model, we distinguish three main layers:
Presentation, Syntax, and Semantics. The Presentation layer
models entities such as token, line of code, fragment (a set of lines
of code), and the ordering property. Although most of the source
code analysis/mining techniques do not require this level of
information, we focused on it, since it serves as a connection point
for the other layers. The Syntax layer models entities such as
variable definition statements, etc. Usually, this information is
extracted from the Abstract Syntax Tree (AST). Note that the first
release of SOCON covers the object-oriented language paradigm.
The top abstraction level is the Semantic layer. It addresses the
modeling of output from static or dynamic code analysis, e.g. call-
graph links and code clones. The vocabulary set of this layer is
not static to accommodate different analysis techniques. While the
two first layers are useful for querying the structural aspects of
source code, the Semantic layer is used for complex queries (e.g.
code clone search).

All entities, regardless of the layer, are connected and traceable.
Source code statements are connected to the Presentation layer
(e.g. line of code) via the hasSourceCode property shown in
Figure 1. Note that the tail (i.e. range) of the property is not a
textual representation of code. It can be a source code statement,
expression, or block (derived from the AST). hasContent is the
property for textual code modeling. The connections to and from
the Semantic layer are provided by either hasSourceCode property
or special relations such as hasFQN (Fully Qualified Name).

5. LINKED DATA FRAMEWORK
The two major objectives of our designed and implemented
framework for source code Linked Data publication are: (1) To
provide a set of public services, including the documentation of
the common vocabulary set (SECON), and URL generation
schemas. The framework (Figure 2) includes online services for
fact extraction from version control systems or manually
downloaded code. It also generates the output in the form of N-
Triples and RDF formats. All of these functionalities are made
publicly available to the software research community [10]. (2)
The framework crawls the Web and publishes the Linked Data
extracted from open source code. The data is accessible via a web
browser (HTML format), query interface, or dump files. Our
SECOLD web server is the first framework for Linked Data that
not only allows source code data sharing, but also conforms to
Linked Data publication rules [1]. The repository contains unique
identifiers and their relationships created by analysis modules. It
is befitting for client applications because of its RDF output. So
far, all mandatory modules (solid borders) have been implemented
and optional modules (dashed border) will be implemented at a
later stage.

Figure 2. Linked Data framework for source code publication.

Since the number of real triples in the source code ecosystem is
huge, we added a special layer called Virtual Triple Generator

(VTG). It generates rdfs:label, rdfs:comment, and

socon:hasContent literal triples (not source code facts) on the
fly. The VTG allows for a reduction of the size of repository.

6. USAGE SCENARIOS
The overall goal of this research is to provide some baselines for
universal identifier generation for all entities in a source code
ecosystem, such as a contributor, line of code, and call graph link.
The objective is to provide the software engineering research
community at large with a starting point to facilitate various
research activities. In what follows, we discuss three potential
application scenarios for SECOLD. They benefit from the facility
of Linked Data and its standard data access solutions [1].

Software mining and analysis. Würsch et al. [11] present four
potential usage scenarios, which are addressed by our research
contributions, to be able to merge two different datasets without
the need for ID alignment. Furthermore, if one of the datasets has
extended the vocabulary set (ontology), the query engine (i.e.
Semantic Web triple store with RDFS reasoning) can handle this
extension elegantly. In addition, our online SECOLD can be used
as a valuable online resource for the research community to
support clone genealogy studies, for example. Our vision is to
provide an online dataset for the software research community
similar to other domains, such as health informatics [3], where
everyone share their dataset which are inter-linked on the fly (e.g.
we plan regular updates every four months).

Internet-scale code search. SECOLD dataset would be accessible
for applications such as Parseweb [8] via HTTP based querying
[1]. They can retrieve the extracted code facts by sending a simple
HTTP request or SPARQL query. Some interesting queries are (1)
All superclasses and subclasses of the given type (supporting
transitivity) (2) All similar lines of code. Project, file, class, line,
import statement, and code similarity are some of the facts
available in the first release. The framework currently supports
three types of line similarity detection differing in precision and
speed. We have implemented a scalable clone detection tool
within the Semantic Layer for the similarity module. To resolve
FQNs, we use a technique called loose unqualified name

resolution [4].

Software maintenance, documentation, and traceability. The last
usage scenario is traceability. We produce a URL for each piece
of source code and extracted facts. This URL would be used to

refer to the entity in software documentation and online
discussions. It eases the tractability task.

7. CONCLUSIONS
Our presented research has three major contributions. A common
vocabulary set (ontology), the URL generation schema, and
publication framework (which conforms to the Linked Data
guidelines [1]) for source code ecosystems. It addresses the
following three objectives: (1) create a source code Linked Data
repository (SECOLD) for the software research community which
will be updated every four months; (2) provide query services for
Internet-scale code search and mining tools; and (3) to provide a
set of public services for URL generation and data conversion
from source code and version control systems. Our framework
and the Linked Data dataset are available online [10]. It is
registered to CKAN under the name SECOLD. The first release of
SECOLD contains 1.5 billion triples extracted from 1.5 million
Java files. It is connected to DBpedia, Freebase, and OpenCyc
within the LOD cloud. In the future, we are planning to support
additional languages (e.g. C++ and C#), provide API for FAMIX
[9] and SourcererDB [7], and include inter-linked issue trackers.

8. ACKNOWLEDGMENTS
This research was partially funded by DRDC Valcartier (contract
no. W7701-081745/001/QCV) and supported by Franz Inc. by
providing AllegroGraph.

9. REFERENCES
[1] Berners Lee, T. Linked Data, http://www.w3.org/DesignIssu

es/LinkedData.html. Last visited Jan. 2011.

[2] David, C., Kohlhase, M., Lange, C., Rabe, F., Zhiltsov, N.,
and Zholudev, V. Publishing Math Lecture Notes as Linked
Data. Lec. Notes in Comp. Science (6089/2010), 370-375.

[3] Jentzsch, A., et al. 2009. Enabling tailored therapeutics with
linked data. In Proc. 2nd Workshop Linked Data on the Web.

[4] Keivanloo, I., Roostapour, L., Schugerl, P., Rilling, J. 2010.
Semantic web-based source code search. In Proc. 6th Intl.

Workshop on Semantic Web Enabled Software Engineering.

[5] Kiefer, C., Bernstein, A., and Tappolet, J. 2007. Analyzing
software with iSPARQL. In Proc. of the 3rd Intl. Workshop

on Semantic Web Enabled Software Engineering.

[6] Lopes, C., Bajracharya, S., Ossher, J., Baldi, P. 2010. UCI
Source Code Data Sets. http://www.ics.uci.edu/~lopes/datas

ets. Irvine, University of California.

[7] Ossher, J., Bajracharya, S., Linstead, E., Baldi, P., Lopes, C.
2009. SourcererDB : An Aggregated Repository of Statically
Analyzed and Cross-Linked Open Source Java Projects. In

Proc. Working Conf. on Mining Software Repositories.

[8] Thummalapenta, S., and Xie, T. 2007. Parseweb: a
programmer assistant for reusing open source code on the
web. In Proc. of 22th Intl. Conf. on Automated Soft. Eng.

[9] Tichelaar, S., Ducasse, D., and Demeyer, S. 2000. FAMIX
and XMI. In Proc. Working Conf. Reverse Eng. DC, USA.

[10] Keivanloo, I., Forbes, C., Rilling, J. Source Code Ecosystem
Linked Data (SECOLD), http://aseg.cs.concordia.ca/secold.

[11] Würsch, M., Reif, G., Demeyer, S., and Gall, H.C. 2010.
Fostering synergies: how semantic web technology could
influence software repositories. In Proc. on Search-driven

Dev: Users, Infrastructure, Tools and Eval. (SUITE '10).

