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This Primer describes how the Semantic Web languages defined by the World Wide Web 
Consortium (W3C) are used in expressing data and the meaning of that data.  It is not 
meant to be a comprehensive explanation of the languages’ syntax and semantics, nor a 
complete story of how the Semantic Web came to be and what it does.  The former can 
be found on the W3C web site (start at http://www.w3.org/standards/semanticweb/), and 
there are several good books available for the latter.   

RDF 

The Resource Description Framework (RDF) language is used to express data about 
resources, where “resources” can be interpreted to be anything (a web page, a person, an 
idea, etc.).  The basic building block is the triple, consisting of subject, predicate, object1. 
The subject is a URI, the predicate is some property that is defined for the type (class) of 
the subject, and the object is either a typed literal or the URI of some other subject.   

Let’s look at a couple of assertions that express data about resources2: 

 bb:YogiBerra rdf:type bio:Person  .  
 bb:YogiBerra bb:playsPosition bb:Catcher  . 

bb:YogiBerra bb:careerHomeRuns 358 . 

The first assertion says that a “resource,” Yogi Berra, whose URI is defined in the bb 
namespace3, is of type Person (where the meaning of Person is defined in the bio 
namespace), he played the catcher position (where the meaning of playsPosition and 
Catcher are defined in the bb namespace), and he had 358 career home runs (where the 
meaning of careerHomeRuns is defined in the bb namespace).  The meaning of “type” is 
part of RDF, and thus is defined in the rdf namespace.  This is what data looks like in 
RDF4:  triples expressed as a subject, a predicate, and an object, separated by spaces, and 
concluded with a period5.   

In order to be able to interpret the meaning (semantics) of assertions such as these, it is 
necessary to define what the assertions are talking about – the meaning of the types 
(classes) and predicates.  We already saw an example of asserting the type of a subject 
using: 

 rdf:type 

                                                
1 Others have used object, property, value or other similar terminology.  Herein we follow W3C terms. 
2 Assertions about instances are indicated in italics herein. 
3 The examples herein presume a namespace, bb, that is used for data about baseball. 
4 The particular syntax used is explained below, along with alternates. 
5 We adopt the usual practice of naming classes and instances in upper camel case and properties in lower 
camel case. 



 

when we asserted that Yogi Berra is a Person.   

A predicate can be asserted by defining that its type is a property, using: 

 rdf:Property. 

For example: 

bb:playsPosition rdf:type rdf:Property  . 
bb:careerHomeRuns rdf:type rdf:Property  . 
 

Once defined, these assertions will provide the meaning to statements about instances, 
such as those above about Yogi Berra. 

Notice the commonality of defining the semantics of the data by triples, and asserting 
instance data using triples.  This is a particular strength of the W3C Semantic Web 
language family. 

Reification is the process of making an assertion about an assertion.  RDF supports 
reification, but the assertion about which the other assertion is made needs to be given a 
URI that refers to it.  Explicit reification uses three properties, rdf:subject, 
rdf:predicate, and rdf:object, to define the three elements of a triple, and then 
assigns a URI to the triple6.  For example, 

 news:12345 rdf:subject bb:WhiteyFord . 
 news:12345 rdf:predicate bb:playsPosition . 
 news:12345 rdf:object bb:Pitcher  . 
 
 news:NewYorkTimes news:reports news:12345  . 

The last assertion says that the New York Times reported that Whitey Ford plays the 
pitcher position, which is different from asserting that Whitey Ford plays the pitcher 
position.  Reification is an important concept, since assertions often need to be made as to 
the source, date, confidence, etc. of assertions in the domain of discourse.  This type of 
data is often called pedigree or lineage or provenance data. 

Syntaxes.  There are three common syntaxes used for serialization of RDF triples. 

N-Triples uses fully unabbreviated URI’s for the subject, predicate, and object, followed 
by a period: 

 <http://www.baseball.org#NYYankees> 
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
 <http://www.baseball.org#Team>  . 

RDF/XML is an XML serialization that integrates best with HTML and the rest of the 
web infrastructure, defining namespaces and then using the rdf:about construct for the 
subject, followed by predicate tags containing the objects, such as: 
                                                
6 There is also a quad (vice triple) representation that is more efficient than explicit reified statements, but 
this is complex (it is easy to make statements that are not intended) so is not addressed herein. 



 

 

 <rdf:RDF 
 xmlns:bb=”http://www.baseball.org#” 
 xmlns:rdf=” http://www.w3.org/1999/02/22-rdf-syntx-ns#” 

xmlns:geo=”http:// www.columbiagazetteer.org/cities#”> 
<bb:Team rdf:about 
“http://www.baseball.org#NYYankees”> 

  <bb:yearFounded 1901 /> 
  <bb:playInCity rdf:resource=  

   ”http://www.columbiagazetteer.org/cities#NewYork”/> 
<bb:hasPlayer rdf:resource=  
   "http://www.baseball.org#YogiBerra"/> 

  </bb:Team> 
 </rdf:RDF> 

Turtle7 is a more compact serialization that defines namespaces (the prefix of a resource, 
which corresponds to a fully qualified URI) and then uses the prefix followed by a colon 
concatenated with the subject, predicate, and object, followed by a period: 

 @prefix bb: <http://www.baseball.org#> 
 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntx-ns#> 
 bb:NYYankees rdf:type bb:Team . 

In Turtle, “a” can be used instead of rdf:type.  With this usage, a triple is more 
“readable” as normal English: 

 bb:NYYankees a bb:Team . 

Turtle allows several triples to be about the same subject (where the predicates and 
objects are delimited by semicolons), or about the same subject and predicate (where the 
objects are delimited by commas), respectively: 

 bb:NYYankees rdf:type bb:Team ; 
  bb:yearFounded 1901 ; 
  bb:playInCity geo:NewYork . 

 bb:NYYankees bb:hasPlayer bb:YogiBerra , 
  bb:JoeDiMaggio , bb:PhilRizzuto  . 

Note that indenting and separate lines are for readability only, and have no meaning to an 
RDF parser. 

RDF Schema (RDFS) 

The Resource Description Framework Schema (RDFS) language is used to assert 
additional meaning (semantics) of data expressed in RDF.  A fundamental construct is the 
class of a subject: 

 bb:Team rdf:type rdfs:Class . 

                                                
7 Another common syntax is N3, which is a superset of Turtle. 



 

bb:Player rdf:type rdfs:Class . 
 bb:Infielder rdf:type rdfs:Class . 
 bb:Outfielder rdf:type rdfs:Class . 

A class can be defined to be the subclass of another class.  Subclasses (child classes) 
inherit all the properties of their superclasses (parent classes).  So if we have defined a 
property on a class, such as bb:playsPosition defined on bb:Player, and then we 
assert subclasses: 

bb:Infielder rdfs:subClassOf bb:Player . 
 bb:Outfielder rdfs:subClassOf bb:Player . 

We can infer that Infielders and Outfielders have a property called 
playsPosition. 

Every property is defined for instances of some class, and has as its values instances of 
some (possibly the same) class, or has as its values typed literals.  The way to express 
these definitions is using the domain and range properties: 

 bb:playsPosition rdfs:domain bb:Player ; 
rdfs:range bb:Position . 

 bb:yearFounded rdfs:domain bb:Team ;  
rdfs:range xsd:gYear  . 

The way to remember domain and range is that one can state in English, roughly, 
“domain property range,” so that the example above would be “a Player playsPosition a 
Position” and a particular instance would be “Yogi Berra (a Player) playsPosition Catcher 
(a Position).”  If the range is a typed literal, the allowable types are the XML Schema 
data types, including Booleans, binary data types, text types (strings, URI’s, etc.), number 
types (integers, positive integers, floats, etc.), and date time types (dateTime, duration, 
month, etc.).   

In a similar manner as with classes, properties can be defined to be subproperties of other 
properties: 

bb:regularlyPlaysPosition rdfs:subPropertyOf  
bb:playsPosition  . 

bb:occasionallyPlaysPosition rdfs:subPropertyOf  
bb:playsPosition  . 

 

The usefulness of defining subproperties will become clearer when we discuss properties 
of properties in the OWL section below. 

A few constructs are defined in RDFS with no semantics, to help people (not computers) 
in understanding.  A printable or displayable name for a resource can be asserted using 
rdfs:label: 

 bb:YogiBerra rdfs:label “Lawrence Peter ‘Yogi’ Berra”  . 



 

A resource can be referenced using rdfs:seeAlso and rdfs:isDefinedBy (which is 
a subproperty of rdfs:seeAlso).  An arbitrary comment can be made using 
rdfs:comment. 

 

Web Ontology Language (OWL)8 

OWL defines certain properties of properties that allow inferences to be made about data.  
This is a very important part of the Semantic Web approach; we don’t need to state 
additional information explicitly for every instance of a class if it can be defined as a 
property on the class and the additional information inferred.   

An important reason why subproperties are included in OWL is so that the properties of 
the superproperty are inherited by the subproperty, and need not be separately asserted. 

Properties can be asserted to be datatype properties, which have as their values an XML 
data type, or can be asserted to be object properties, which have as their values an 
instance of some class: 

 bb:yearFounded rdf:type owl:DataTypeProperty  . 
 bb:playsForTeam rdf:type owl:ObjectProperty  . 

Common practice is to use these two OWL constructs instead of the rdf:Property 
construct, since they assert more information about the property.  

Two properties can be inverses of one another: 

 bb:playsForTeam rdf:type rdf:Property ; 
rdfs:domain bb:Player; rdfs:range bb:Team . 

 bb:hasPlayer rdf:type rdf:Property  ; 
  owl:inverseOf bb:playsForTeam  . 

so if we assert: 

 bb:YogiBerra bb:playsForTeam bb:Yankees  . 

then we can infer, without having had to explicitly state: 

 bb:Yankees bb:hasPlayer bb:YogiBerra  . 

A property can be symmetric: 

 bb:teammateOf rdf:type owl:SymmetricProperty  . 

so if we assert: 

 bb:YogiBerra bb:teammateOf bb:PhilRizzuto  . 

then we can infer: 

                                                
8 Not all OWL constructs are described in this Primer. 



 

 bb:PhilRizzuto bb:teammateOf bb:YogiBerra  . 

Properties can be transitive: 

 bb:teammateOf rdf:type owl:TransitiveProperty  . 

so if we assert: 

 bb:YogiBerra bb:teammateOf bb:PhilRizzuto  . 

bb:PhilRizzuto bb:teammateOf bb:JoeDiMaggio  . 

then we can infer: 

bb:YogiBerra bb:teammateOf bb:JoeDiMaggio  . 

Properties can be functional, meaning that each instance has at most one value: 

 bb:hasCareerBattingAve rdf:type owl:FunctionalProperty  . 

 bb:YogiBerra bb:hasCareerBattingAve .285  . 

Yogi cannot have two or more different career batting averages; he has only one. 

Properties also can be inverse functional, meaning each value has only one instance: 

 bb:holdsRecord rdf:type owl:InverseFunctionalProperty  . 

 bb:TyCobb bb:hasCareerBattingAve .366  ;   
    bb:holdsRecord “CareerBattingAverage” . 

bb:hasCareerBattingAve is not inverse functional, since more than one player 
could have a career batting average of 0.285, like Yogi, but bb:holdsRecord is 
inverse functional, since only one player has the highest career batting average. 

Properties can also have cardinality restrictions, asserting the minimum, maximum, or 
exact number of instances allowed: 

bb:inningsPlayedInGame owl:minCardinality 5  . 

bb:hasDefensivePlayers owl:cardinality 9  . 

bb:hasOffensivePlayers owl:maxCardinality 4  . 

OWL provides capabilities to make assertions about the equivalence, or lack thereof, 
between classes, properties, and instances.  Two classes can be asserted to be the same: 

 bb:Player owl:equivalentClass sports:Pro  .  

or they can be asserted to be different: 

 bb:Player owl:disjointWith bb:Manager  . 

Two properties can be asserted to be the same: 



 

 bb:playsForTeam owl:equivalentProperty sports:memberOf  . 

or they can be asserted to be different: 

bb:playsForTeam owl:propertyDisjointWith bb:managesTeam  . 

Two instances can be asserted to be the same: 

 bb:YogiBerra owl:sameAs sports:LawrencePBerra  . 

or they can be asserted to be different: 

 bb:YogiBerra owl:differentFrom bb:DaleBerra  . 

OWL has its own class construct, owl:Class.  It is similar in concept to rdfs:Class, 
but whereas classes in RDFS can only be built through the subclass relationship, in OWL 
classes also can be built via enumeration, union, intersection, complement, etc.: 

 bb:League rdf:type owl:Class ;  
owl:oneOf (bb:AmericanLeague bb:NationalLeague)  . 

 bb:Infielder rdf:type owl:Class ;  
owl:unionOf (bb:FirstBaseMan  
bb:SecondBaseMan bb:ThirdBaseMan bb:ShortStop)  . 

 bb:TripleCrownWinner rdf:type owl:Class ;  
owl:intersectionOf  
(bb:BattingAveLeader bb:HomeRunLeader bb:RBILeader ) . 
 

 

SPARQL 

The query language for the Semantic Web is SPARQL9.  Two forms of query are 
defined:  the SELECT form and the CONSTRUCT form. 

The basic SELECT form query in SPARQL is the triple pattern, which is a triple with 
zero (or more) of subject, predicate, or object as an unbound variable.  Executing the 
query will return any triples that match the triple pattern, with all variables bound.  
Examples of SPARQL queries with the subject, predicate, and object as an unbound 
variable, respectively, are: 

?team bb:hasPlayer bb:YogiBerra . 
NYYankees ?r bb:YogiBerra . 
NYYankees bb:hasPlayer ?player . 

A triple store with a SPARQL query engine will return, respectively, all teams that Yogi 
Berra played for, all relationships Yogi had with the New York Yankees, and all players 
who played for the New York Yankees. 

                                                
9 SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language. 



 

Much more interesting and useful are SPARQL queries that are graph patterns.  This 
query expresses a set of triple patterns, where any variable that appears in two or more 
triple patterns must bind to the same resource.  The set of triple patterns is enclosed in 
braces.  An example is: 

{?team bb:hasPlayer ?player. 
?player bb:playsPosition bb:Catcher . 
?player bb:teammateOf bb:PhilRizzuto .} 

This query will return any team/player graph where the player played on that team and 
played catcher, and was a teammate of Phil Rizzuto.  So the graph with bb:NYYankees 
connected by the bb:playsPosition predicate to bb:YogiBerra is one set of 
bindings that meet the query criteria, but so is bb:NYYankees and 
bb:BillDrescher. 

The basic CONSTRUCT form query in SPARQL is two (or more) graph patterns that 
produce new graphs, where any variable that appears in the graph patterns must bind to 
the same resource. For example: 

CONSTRUCT (?s bb:hasPlayer ?o) 
WHERE {?s bb:playInCity geo:NewYork . 

 ?s bb:hasPlayer ?o . 
  ?o rdf:playsPosition bb:Catcher .} 

 

will return all team/player graphs where the team plays in New York (the Yankees and 
Mets) and has a player who is a catcher, including the graph connecting bb:NYYankees 
to bb:YogiBerra. 

Another example that uses reification is: 

CONSTRUCT (?s bb:hasPlayer ?o) 
WHERE {?r rdf:subject ?s . 
  ?r rdf:predicate bb:hasCatcher . 
  ?r rdf:object ?o . 
  ?r bb:year 1948 . } 

which will return all team/catcher graphs connected by the hasCatcher predicate that 
were asserted to be true in 1948, including the graph connecting the New York Yankees 
to Yogi Berra. 

 


