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Abstract. Using robust entity extraction technology allows for the automatic comprehension of words, 

sentences, paragraphs and whole documents. Categorization, extraction, domain establishment, taxonomy 
and ontology creation can then be built upon a semantic technology infra-structure to exploit the capabilities 

provided in OWL and RDF. This technology brings value to the intelligence community by allowing users to 
find, discover and create structured knowledge connections from what were previously unstructured 
information sets. The presentation “Enhance Entity Extraction Using an RDF Store” will demonstrate how to 

represent output from Expert System’s Cogito entity extractor in a Franz AllegroGraph RDF database, and 
perform reasoning along with visually generated SPARQL queries. We will demonstrate a new product 

called TexTriples that combines professional entity extraction, a scalable triple-store, and intelligent web 
spidering. We will show how TexTriples collects thousands of articles from newspapers and blogs, and 

processes them through Cogito to create RDF triples for use in AllegroGraph. The presentation will discuss 

tips and techniques in dealing with these representations, demonstrate how to relate entities to Linked Data 
such as DBpedia, Scalability, and finally we will perform a number of queries on the resulting triple store 

data using some straight forward inferencing. 
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1   Entity Extraction: Cogito’s Approach  

Cogito collects all the structural and lexical text aspects in order to comprehend natural language and understand 

the meanings of words and sentences. Cogito’s processing results in a cognitive and conceptual map, i.e. a 

structured representation of qualifying aspects of incoming unstructured data. The output structuring allows the 

automatic processing of the most relevant elements of the text. (Figure 1) 

 

 

 

 

 

Figure 1: 



1.1   Cogito’s Main Features 

Cogito is composed of various modules dedicated to specific activities needed to disambiguate texts and process 
natural language which are essential for automatic comprehension of questions formulated in everyday 
language. 

To automatically understand text, we need: 

- a semantic network, which is the heart of semantic technology; 

- a parser to trace each text back to its basic elements;  

- a linguistic engine to query the semantic network (this links the basic elements of the text with the semantic 

network of meanings); 

- a ”disambiguation” system. 

1.1.1   Semantic Network  

We’ve been developing a set of semantic networks graphically connected to express conceptual representations 
of language. 

A semantic network is a lexical database in which terms are entered and grouped based on their meanings, or 

the concepts they express. Therefore, they are not ordered alphabetically like in a standard dictionary but 

according to their meaning (this is why the network is called “semantic”) and to the various possible 

connections among these meanings (and this is why we talk about “semantic relations”.) 

Each node in the semantic network is linked to the others by semantic connections in a hierarchical and 

hereditary structure, in the form of a graph. 

Our network contains: 

- information about connections among objects 

- specifications about the lexical domains of each word 

- information about the frequency of use  

 

The richness of a semantic network is measured by both the quantity of words/concepts and of the semantic 

relationships. For example, concepts can be linked to each other in the following ways: 

1) Subnomen (hyponymy: relation between a specific concept and a more general one) and supernomen 

(hypenymy. The supernomen is the more generic term, a word having a general meaning in comparison to 

others representing specifications of that meaning: ex. “animal” is a supernomen of “cat”);  

2) Parsnomen (meronymy) and omninomen (holonymy), or the part-whole semantic relationship. A 

parsnomen is a noun that indicates a part of a whole (which is called the omninomen), such as for example the 

case of piece-cake (part=portion-whole=object) or plastic-bottle (part = material - whole = object); 

3) Relationships among nouns and verbs such as verb-subject or verb-object: given a noun and considering 

all possible “verb/subject” links, we obtain all the verbs normally (frequently) connected to that noun when it is 
the subject of the sentence:  subject noun “food” verbs “to rot”, “to grow”, etc. The mechanism is the same 

when we consider the semantic relation “verb-object”: object noun “food” verb “to eat”, “to swallow”, “to 

grind”, ”to chew”… 

4) Other kinds of connections, such as geographical links, are based on similar logic 

- each geographical element (not only countries, towns, rivers, valleys, etc. but also for example monuments) 

is connected to other geographical elements. Therefore for example “St. Cloud” is linked to “Minnesota” which 

in turn is linked to “Midwest” which is linked to “USA”. Also, for example “Piccadilly” is linked to “London” 

which is linked to “England” which is linked to “Great Britain”, etc. (Figure 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 



1.1.2  Parser 

The first step to take in order to understand the meaning of a sentence is to determine the grammatical role of 

each word. For example, in these sentences: 

 
(a) “He aged 40 years.” 

(b) “The wine has aged.” 

 

The word “aged” appears with two different grammar types: in sentence (a) the word is an adjective, while in 
sentence (b) it's a verb.  According to traditional technology the two words are the same, while the semantic 

technologies assign different meaning to them.  Recognizing a word independently of its written form is equally 

important; nouns and verbs have several forms: 

 

(a) “Marcello Mastroianni was the most popular Italian actor abroad.” 

(b) “It is dissapointing that most of our popular young actresses do not play a protagonist role.” 

 

In the sentences above, two forms (“actor”, “actresses”) expressing the same concept are used. The parser 

performs a complete morphological, grammatical and syntactical analysis of the sentence, managing more than 

3500 rules very quickly. Our parser uses an innovative and ad hoc methodology to query the semantic network, 

resulting in a significant improvement of the existing parsing. So semantic technology individuates gender - to 

recognize both words in the sentences above as forms of “acting person” associating all of them to their 

common meanings correctly, instead of treating different words, individually, as other systems do. 

 

1.1.3  System of Disambiguation  

For humans, meaning is something obvious to us because of our capability to refer automatically to cultural 

elements that help us to understand the meaning of a word. The disambiguator of meanings, included in our 

semantic technology, thoroughly analyzes sentences or whole documents and distinguishes the right meaning 

for each element found, eliminating possible ambiguities. 

The information of all the possible meanings of words is fundamental in order to process textual content with 

high precision.  
 

The disambiguation of meaning is one of the most complicated problems of semantics. To obtain a satisfying 

elaboration speed, the following comoponents are needed: 

- a vast knowledge structured like an encyclopedia 

- a set of disambiguation algorithms working perfectly 

 

Disambiguating, in fact, is the true problem in the automatic interpretation of text. In order to distinguish 

between 

“The rust eats the tower.” 

“The knight eats the tower.” 

 

The research and development of automatic systems for semantic disambiguation must solve a crucial 

problem: the administration of the number of existing combinations that can be generated when dealing with 

words and texts. These can be combined together in a very high number of ways, increasing exponentially. 

 

A disambiguation system can work sentence by sentence or can consider whole documents, according to the 

way it is configured. Distinguishing all the possible meanings of a text is an additional, but extremely critical, 

step beyond the more common analyses of: logical, grammatical, query of the semantic network, and domain 

analysis. 

 

There are many examples of interpretations of words that humans can take for granted but a program can not, 

including expressions meant in a figurative sense. 

 
Some examples of what semantic disambiguator can do include: 

Understanding univocally the following sentences: 

Example 1: 

“He has eaten a chicken.” 

“The sweater was eaten by the moths.” 

“The rust ate the tower.” 

“The slot machine ate his money in just one summer.” 



“Your car eats too much oil.” 

 

Example 2: 

“We went out for a row.” 

“The condemned is in a death row.” 

“They’ve had a big row.” 

“My row boat is the third in the row.” 

2   AllegroGraph Database 

AllegroGraph is an RDF graph database and application framework for building Semantic Web applications. It 
can store data and meta-data as triples/quads; query these statements through various query APIs like SPARQL 

and Prolog; and apply reasoning with its built-in RDFS++ reasoner.  Additional features of AllegroGraph 

include Free-Text Indexing, Range Queries, Federation, Social Network Analysis, Geospatial capabilities and 

Temporal reasoning.  

The data represented back in Figure 2, Cogito Semantic Network represents information about mammals and 

animals. Like much of the data on the web, there are explicit relations like mammal is an animal and implicit or 

common-sense relations such as petOf is an inverse relation to hasPet and Cat is a subClassOf Mammal.  

Though there are many ways to store this information, the W3C has standardized on the Resource 

Description Framework (RDF). RDF breaks knowledge into assertions of subject predicate object (like the three 

sentences above). For obvious reasons, these assertions are called triples. If we have many triples from different 

contexts, we can append an additional slot to each assertion; we call this slot a named graph. Even though these 

assertions are now quads, we'll still call them triples.  
AllegroGraph is a high-performance database built to hold this information, query it, and reason with it. One 

thing to note is that AllegroGraph doesn't restrict the contents of its triples to pure RDF. In fact, we can 

represent any graph data-structure by treating its nodes as subjects and objects, its edges as predicates and 

creating a triple for every edge. The named-graph slot can be used to hold additional, application-specific, 

information. Used this way, AllegroGraph becomes a powerful graph-oriented database.  

For many applications, graph databases can be more flexible and faster than RDBMSs because: 

• You add new predicates without changing any schema  

• One-to-many relations are directly encoded without the indirection of tables  

• You never think about what to index because everything is indexed  

 

In RDF, an assertion is a statement that contains subject, predicate, and object (in the context of graph). The 
bulk of an AllegroGraph triple-store is composed of assertions. Though called triples for historical reasons, 

each assertion has five fields: subject (s), predicate (p), object (o), graph (g), and triple-id (i)  

 

All of s, p, o, and g are strings of arbitrary size. Of course, it would be very inefficient to store all of the 

duplicated strings directly so we associate a special number (called a Unique Part Identifier or UPI) with each 

unique string. The string dictionary manages these strings and UPIs and prevents duplication. To speed 

queries, AllegroGraph creates indices which contain the assertions plus additional information. AllegroGraph 

can also perform freetext searching in the assertions using its freetext indices, and keeps track of deleted 

triples. Triple-data generally comes into AllegroGraph as strings either from pure RDF/XML or as the more 

verbose but simpler N-Triple format. The programmer API also makes it easy to import data from RDBMSs, 

CSV or any other custom data format.  
AllegroGraph has the ability to encode values directly into its triples (thus bypassing the string dictionary 

completely). This allows for both more efficient data retrieval and extremely efficient range queries. We take 

advantage of this data representation in the add-on libraries for geospatial reasoning, temporal reasoning and 

social network analysis. 

2.1 Triple-store operations  

You can manipulate data in triple-stores via many different interfaces and languages including Java, HTTP, 

Python, Perl, C#, Ruby and Lisp. Each language provides mechanisms to create and open triple-stores; load 

them with data in bulk-mode or programmatically; manage indices; enable RDFS++ reasoning; query for triples 

that match simple or complex constraints; serialize triples in many formats; and understand and manage server 

performance.  



2.1.1 Range Queries  

In addition to strings, AllegroGraph can store many datatypes directly in its triples. This lets it perform range 

queries in a single operation. A range query involves immediate data lookup and comparison and is therefore as 

fast as a search for an individual triple.  

2.1.2 Cursors 

When AllegroGraph is given a query pattern, it responds with a cursor that iterates over the triples that match 

the pattern. Programs can use functions like Java's cursorNext() to move through a cursor or use higher-level 
constructs like map-cursor.  

2.2 Querying Indices 

AllegroGraph builds indices so that any query can find its first match in a single I/O operation. We can 

abbreviate the index flavors using s for subject, p for predicate and so on. What matters with an index is the sort 

order of the triples. For example, the spogi index first sorts on subject, then predicate, object, graph, and finally, 

id. If we ignore the triple ID, there are 24 different index flavors running from spogi through gopsi. Out of the 
box, AllegroGraph builds six index flavors in the background as triples are added. You can customize which 

indices are built, when they are built and how they are updated. For example, if you never use named-graphs 

then you can drop the three g indices to save both disk space and processing time.  

2.3 Query APIs  

2.3.1 SPARQL 

SPARQL is the query language of choice for modern triple-stores. AllegroGraph's SPARQL adheres to the 
W3C standard; includes a query optimizer; and has full support for named-graphs.  

2.3.2 RDFS++ Reasoning  

Description logic or OWL reasoners are good at handling (complex) ontologies, they are usually complete (give 

all the possible answers to a query) but have completely unpredictable execution times when the number of 

individuals increases beyond millions. 

AllegroGraph's RDFS++ reasoning supports all the RDFS predicates and some of OWL's.   With RDFS++ 

we exchange the completeness of full OWL for predictable and fast performance 

2.3.3 Prolog  

Prolog is an alternative query mechanism for AllegroGraph that provides the ability to specify queries 
declaratively. You send Prolog select queries to the server as a string and you get the bindings back as a list of 

values. 

2.4 Federation - Data Management 

AllegroGraph uses the same programming API to connect to local triple-stores (either on-disk or in-memory), 

remote-triple-stores and federated triple-stores. A federated store collects multiple triple-stores of any kind into a 
single virtual store that can be manipulated as if it were a simple local-store. Since federation provides a natural 

mechanism to join disparate triple-stores, we can use separate instances of AllegroGraph to load data on 

multiple CPUs and then combine them at query time. 

AllegroGraph's federation mechanism and flexible triple-store architecture combine to make it easy to 

connect multiple stores together and treat them as one. For example, we can combine the DBpedia, the USGS 

Geonames database and Cogito information into a single virtual store and explore the interconnections between 

these datasets without worrying about where the triples originate. Even better, we can keep different kinds of 

triples separate and combine them as needed. E.g., we can keep known facts, inferred triples, provenance 

information, ontologies, metadata and deleted triples in separate, easily manageable stores and combine and re-

combine the data as necessary. 

Enterprise data volumes are growing without bound making it essential to enable the accumulation and 

archiving of multi-billions of triples. Federation lets you segment your data into usable chunks that can be 
swapped in and out as needed. Since federated data stores can be built and changed, it is simple to look at 

historical data whenever necessary.  



2.5 Specialized Datatypes  

AllegroGraph supports several specialized datatypes for efficient storage, manipulation, and search of Social 

Network, Geospatial and Temporal information.  

2.5.1 Social Network Analysis  

By viewing interactions as connections in a graph, we can treat a multitude of different situations using the tools 

of Social Network Analysis (SNA). SNA lets us answer questions like: 

  

• How closely connected are any two individuals?  

• What are the core groups or clusters within the data?  

• How important is this person (or company) to the flow of information? 

• How likely is it that two people know one another? 

 

AllegroGraph's SNA toolkit includes an array of search methods, tools for measuring centrality and 

importance, and the building blocks for creating more specialized measures. 

2.5.2 Geospatial Primitives  

AllegroGraph provides a novel mechanism for efficient storage and retrieval of geospatial data. Support is 

provided both for Cartesian coordinate systems (i.e., a flat plane) and for spherical coordinate systems (e.g., the 

surface of the earth or the celestial sphere). Coordinates in two dimensions are encoded into a single UPI. Once 

data has been encoded this way, AllegroGraph can perform queries in either Cartesian or spherical coordinates 

very quickly.  AllegroGraph's geospatial application also has support for defining polygons and quickly 

determining whether a point lies inside or outside a given polygon, whether two polygons overlap, and 

retrieving all triples that lie inside of a given polygon.   

2.5.3 Temporal Primitives  

AllegroGraph supports efficient storage and retrieval of temporal data including datetimes, time points, and time 

intervals.  Once data has been encoded, applications can perform queries involving a broad range of temporal 

constraints on data, including relations between: points and datetimes, intervals and datetimes, two points, two 

intervals, points and intervals. 

2.5.4 Freetext Indexing  

AllegroGraph can build freetext indexes of the strings of the objects associated with a set of predicates that you 

specify. Given a freetext index, you can search for text using boolean expressions ("market" AND "housing"), 

wild cards ("science*" OR "math*"), and phrases ("Semantic Web search"). 

2.6 Gruff – Graphical Query Generator and RDF Browser 

Gruff is a visual query generator for SPARQL and Prolog as well as a triple-store browser that displays visual 

graphs of a store's resources and their links. Gruff provides an intuitive interface to create queries without prior 

knowledge of SPARQL or Prolog.    

 

For exploration of your data you can build a visual graph that displays a variety of the relationships in your data. 

Gruff can also display tables of all properties of selected resources or generate tables with SPARQL queries, and 
resources in the tables can be added to the visual graph. (Figures 3, 4, 5, and 6) 

 

 

 

 

 

 

 

 

 

Figures 3-6:  

 

  

Figure 3: Figure 4: 



 

 

 

 

 

 

 

3 Expert System & AllegroGraph Integration 

Franz and Expert System have created a prototype of a new product that integrates a scalable RDF triple store, a 
commercial grade entity extractor, and a configurable web spider. Overview of TexTriples capabilities: 

 

 

 
Figure 7 

 

 

Direct Import. The simplest method of import is pointing TexTriples to a list of files or URLs, apply entity 

extraction to the text, and then turn those entities into RDF triples.  

 

Spider Import.  Slightly more complex is to point TexTriples to a website and specify a number of parameters 

(stay in website, only use if there is a person name in the main text, etc.). It will spider the entire website 

according to the parameters and turn text, via entities, into RDF triples.  

 

News related Keyword import.  Using a list of search terms TexTriples will spider a large number of news 
sources and blogs to find the most recent articles about these keywords and turn the text sources into RDF 

triples. The texts that are found are also annotated with the date of the article and the sentiment analysis score. 

 

Open Link Data Linking (OLDL). If you set OLDL to 'true' TexTriples will: 

 

• Automatically link place names to the Geonames database in order to add latitude and longitude 

to names.  

• Link people names against FreeBase and DBpedia. We will provide some basic disambiguation 

to make sure that we have a high precision for these people. We also offer to link to user defined 

databases or external data sources like LinkedIn and Facebook.  

• Link organizations to FreeBase and the Hoover's company database. The latter feature does 
require a subscription to Hoover's. 

 

  

Figure 5: Figure 6: 



 

Graphical Query Generation. All the triples are queryable through our visual AllegroGraph Gruff interface 

using SPARQL (or Prolog for advanced usage).  We provide a visual query builder so that analysts’ don't have 

to go through the trouble of learning complicated query languages. 

  

Advanced Text Mining. There are a number of techniques that we offer. For example you can find all the 

articles that look like article A based on predicates p1, p2, p3. Another example would be that we find per 

person the topics that were most popular over time.  

 

Faceted Navigation. Finally, AllegroGraph has full text indexing over all the generated triples and TexTriples 

can perform faceted navigation of the combination of triples and text.  

 

Scalability.  The current corpus is approximately 8 billion triples with additions of approximately 10 million 

triples each day. 

 

In this demonstration we will provide a “Politics” example where we track all politicians from the executive 

branch, Congress and the House of Representative for a number of months. 

 


