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Abstract 

This paper is about a new type of event database that 

enables efficient reasoning about things, people, companies, 

relationships between people and companies, and about places 

and events. The event database is built on top of a scalable 

distributed RDF triple store that can handle literally billions of 

events. Like objects, events have at least one actor, but usually 

more, a start-time and possibly an end-time, a place where the 

event happened, and the type of the event. An event can have 

many additional properties and annotations. On top of this event 

database we implemented libraries for RDFS++ logic reasoning, 

for geospatial and temporal capabilities, and an extensive social 

network analysis package. This paper focuses on a query 

framework that makes it easy to combine all of the 

aforementioned capabilities in a user friendly query language. 

 

 

I. INTRODUCTION 
 

This paper describes the design and use of a unifying 

query framework for geospatial reasoning, temporal logic, 

social network analytics, RDFS and OWL in Event-based 

systems [1]. In this introduction we will first go into why 

we need such a framework and the requirements for such a 

framework. 

 

The reason for such a framework can be answered by 

looking at the vision of the semantic web and 

understanding how companies use semantic technologies. 

Tim Berners-Lee, James Hendler and Ora Lassila’s 

Scientific American article (May, 2000) [2] provides a 

compelling vision of the Semantic Web. It contains some 

interesting use cases for what the Semantic Web will 

bring. These use cases assume that software agents know 

how to roam the web and reason over things, people, 

companies, relationships between people and companies 

and about places and events. Clearly these agents need a 

query capability that supports a combination of description 

logic, geospatial reasoning, temporal reasoning, and 

knowledge about the social relationships between people. 

The commercial vendors of Semantic Technologies 

also see a number of use cases that all center around events 

and require the aforementioned query capabilities. We 

currently see companies using large data warehouses with 

very disparate RDF based triple stores describing various 

types of events where each event has at least two actors, 

usually a begin and end time, and very often a geospatial 

component. These events are literally everywhere: in 

Health Care applications we see hospital visits, drugstore 

visits, and medical procedures. In the Communications 

Industry we see telephone call detail records, including 

location. An email and calendar database of a large 

company is nothing more than a social network database 

filled with events in time and, in many cases, space. In the 

Financial Industry every transaction is essentially an event. 

In the Insurance Industry claims are important events and 

they desperately need more activity recognition. In the 

Intelligence community basically everything revolves 

around events and actors. The REWERSE program from 

the 6th Framework Programme of the EU Commission [3] 

is one of the few systematic efforts to combine RDFS/OWL 

with geotemporal reasoning, although the social aspect 

hasn't been addressed yet. The recent book “The 

Geospatial Web” [4] currently provides the state of the art 

overview on how to work with people and events on a web 

scale and what kind of applications we might expect in the 

near future. 

 

II. FRAMEWORK REQUIREMENTS 
 

The Semantic Web community has made great strides 

in the area of ontologies and description logic, and some 

initial work in the areas of geospatial reasoning [5], 

temporal reasoning [6], social network analysis [7], and 

event ontologies [8]. All of this is based on RDF as the 

data representation.  Based on this W3C standard the 

combination of all these different reasoning capabilities in 

one unified framework will propel further industry 

adoption of Semantic Technology. Given that we have 



seen a direct need for query capabilities that handle 

geospatial/temporal/social/rdfs/owl, we have designed a 

framework. The main requirements we identified were: 

 

1. User and programmer friendly: We wanted the 

framework to be an extension of SPARQL, with 

SPARQL as the foundation. Certainly the 

framework should not be anymore complex than 

SPARQL. SPARQL is relatively user friendly, and 

as languages go, the adoption rate is such that one 

could make the argument that it is sufficient to 

address most use cases. 

 

2. Implementer friendly: We need many people to 

experiment with this proposed framework such 

that the Semantic Web community can converge 

on a standard. 

 

3. Efficient: Given that we work with very large 

databases with millions of events where the 

response time has to be on the sub second level, the 

implementation of the query language and query 

engine needs to be very fast 

 

4. We want the query language to work on distributed 

databases. Currently we’ve designed the query 

engine to work on federations of triple stores. Once 

we develop efficient caching techniques for 

distributed RDF knowledge stores residing all over 

the web, it will also be efficient for agents that 

need to roam the web.  

 

5. Practical & Easily Extendible: We want the API to 

be such that it can be easily modified to allow for 

ongoing experimentation. 

 

6. Works well with RDFS and OWL reasoning.  
 

 

III. DISCUSSION 
 

In the remainder of the paper we show how we can 

combine geospatial reasoning, temporal logic, social 

network analytics, and RDFS reasoning all in one query 

language. 

One question that people ask who are familiar with 

triple stores is: how can this work efficiently on very large 

data sets containing billions of triples? Most first 

generation triple stores store the URIs and literals that 

constitute the parts of a triple as strings in a dictionary. So, 

when doing range queries over numeric values, for 

example, "select * from person where age > 50”, the triple 

store engine has to go through each value for the predicate 

‘age’. One way around this is to add btrees for every 

numeric type but that in general is a very inefficient 

solution in triple stores. The triple store that we use is 

AllegroGraph which is actually a hybrid between a 

relational database and triple store, the internal 

representation of the triples is such that is allows for very 

efficient range queries. 

A. Temporal Reasoning 
 

Our temporal reasoning is based on James Allen’s 

Interval Logic [9]. This logic looks at all the 13 ways two 

temporal intervals can relate to each other. We provide 

predicates for each of Allen’s 13 interval predicates. Note 

that we do purely quantitative temporal reasoning. So if 

you provide a number of events with a start time and an 

end time or a duration then we can perform queries like 

the following. This example will return all intervals ?i2 

that happened in interval ?i1.  

(select ?x (interval-during ?i1 ?i2)) 

Temporal reasoning uses the range query capabilities to 

the fullest extent. If you want to find all the events that 

happened between Jan. 1, 2008 and Jan. 2, 2008, the triple 

store performs a straight triple query with only one cursor 

scan. It is still possible to blow up the query time 

spectacularly by doing things like 

 (select (?x ?y) (point-before ?x ?y)) 

as that will generate every before/after pair. However, we 

do consider that to be the responsibility of the user. In 

many cases a query optimizer can warn for that or 

rearrange the clauses to bind ?x or ?y. 

 

B. Geospatial Primitives 
 

Our original intention of adding Geospatial capabilities 

was not so much to compete with existing spatial databases 

but instead make it very easy for RDF users to be able to 

deal with locations of objects very efficiently. In order to 

make this fast we implemented a variation of an R-Tree to 

encode two-dimensional data very efficiently directly in 

the triple indices [10]. A detailed description of how this 

geospatial representation works can be found in the 

geospatial tutorial included with the AllegroGraph 

documentation [11].  Currently we support a number of 

predicates that can be used in the query language.  Some 

examples of the predicates: 

 

 (geo-distance ?x ?y ?dist)  -> given, x and y, return distance 



 (geo-within-radius ?x ?y 10.0) -> find  y within 10 miles from x 

 (geo-inside-polygon ?polygon ?place ?lon ?lat) 

 

For our benchmarking we use the open source 

GeoNames database that can be freely downloaded from 

GeoNames.org [12]. The database contains nearly 7 

million points of interest on earth. From interesting points 

in nature, to populated areas, to schools and churches, etc. 

Each point has 12 features such as asciiname, the local 

name, elevation level, longitude, latitude, population, etc. 

Actually, it is not a database but a csv file that 

programmers can modify as necessary. For our purposes 

we obviously transform it into RDF triples. We can 

retrieve all 459 geo-points around Berkeley less than 4 

miles away in less than 5 milliseconds. We would argue 

that the basic retrieval speed is comparable to or better 

than current commercial spatial databases.  Here are some 

typical example queries that you can do on the GeoNames 

database: 

 

Find the distance between Oakland and the one and only 

Berkeley in California. 

(select (?dist) 

        (q ?x geo:name “Oakland”) 

        (q ?y geo:name "Berkeley") 

        (q ?y geo:admin1_code "CA") 

        (geo-distance ?x ?y ?dist)) 

 

Put in a Google map all the places within 10 miles from 

Oakland  

(google-map  (select (?name ?lat ?lon) 

                          (q ?x geo:asciiname “Oakland”) 

                          (geo-within-radius ?x ?y 10) 

                          (q ?y geo:asciiname ?name) 

                          (q ?y geo:isAt5 ?pos) 

                          (pos->lon/lat ?pos ?lon ?lat))) 

 

C. Social Network Analysis (SNA) 
 

Many RDF resources are about people and 

relationships between people, or between people and 

companies, or between companies and other companies. 

We added Social Network Analysis methods to make it 

easier to reason about relationships and groups. The 

functions that we provide address the five basic questions 

from Social Network Analysis. (1) How far is person A 

from person B, (2) if there is a link between A and B then 

how strong is this relationship, (3) given a particular actor 

A, in what group does this actor ‘live’, (4) given an actor 

in a group, how important is this actor in the group and 

finally, (5) given a group, how dense are the relationships 

in  the group and does this group have a leader or a set of 

leaders.  The SNA library encompasses a set of well know 

SNA algorithms. We provide a set of general functions and 

have developed the concept of a generator. A generator is 

basically a function that takes as an input one node and 

then creates a set of output nodes. The search functions 

and SNA functions that we provide take these generators 

as first class arguments. For example: say we have a 

database with relationships between people, the generator 

‘knows’ will take as an input a person and return a set of 

person(s) by following fr:went-to-dinner-with and fr:went-

to-movies in both directions. 

 

(defgenerator knows () 

    (bidirectional fr:went-to-dinner fr:went-to-movies)) 

 

We can use this generator to find, for example, the 

shortest path between two people.  In this case the query 

will return a list of persons. 

 

(select ?x  

     (shortest-path knows fr:Person1 fr:Person2 ?x)) 

 

Or we can use the generator to first create a group of 

friends and friends of friends in the ego-group predicate, 

and then we find the importance of each member using the 

actor-centrality measure. This predicate will start with the 

most important one first.  

  

(select ?x  

(ego-group fr:Person1 knows 2 ?group) 

    (actor-centrality-members ?group knows ?x)) 

 

AllegroGraph is a native, general graph database, 

written specifically to make graph search faster. However, 

the bottleneck is still getting triples from disk as fast as 

possible and having the smartest algorithms and best 

caching available. For example, many of the centrality 

measures that are used to compute the importance of an 

actor in a known group need to compute the shortest path 

between every actor in the group. We have created special 

constructors to cache these groups in a transparent way so 

that most computations can be done without minimal IO.  

 

IV. AN OVERVIEW EXAMPLE 
 



In order to give the reader an impression of the 

breadth and depth of the query language, we provide a 

typical example that combines geospatial, temporal,  SNA 

and RDFS reasoning.  

(select (?x) 

   (ego-group person:jans knows ?group 2)              

   (actor-centrality-members ?group knows ?x ?num) 

   (q ?event fr:actor ?x)                              

   (qs ?event!rdf:type fr:Meeting) 

  (interval-during ?event “2008-12-01” “2008-12-05”)   

   (geo-box-around geoname:Berkeley ?event 5 miles)       

   !) 

In English this translates into:  

Find the group of friends and friends of friends 

around the person “Jans”. Find within this group the 

most important person first. Find if this person was 

part of an event that was of type Meeting and 

happened in a particular time interval within 5 miles 

of Berkeley.   

Note that we seamlessly mix Social Network Analysis in 

the first two clauses, a simple database look up in the 

third, an RDFS inference about the type of event, and then 

a temporal and a geospatial constraint. This current 

example and the examples shown above utilize Prolog. We 

expect in early 2009 to have a SPARQL engine that will 

perform this identical query. 

The syntax of the SPARQL query will be slightly 

more contrived due to the fact that SPARQL normally only 

allows patterns that map directly on triples (see example 

below).  Note that we introduced the non-standard ‘=’ or 

assignment construct. We are planning to discuss this 

topic with the SPARQL committees. 

select ?x where { 

   ?group =  ego-group(person:jans knows 2) .              

   ?x = actor-centrality-members(?group knows ?x) . 

   ?event fr:actor ?x ; 

              rdf:type fr:Meeting . 

   FILTER (interval-during ?event '2007-12-01' '2007-12-31')   

 FILTER (geo-box-around geoname:Berkeley ?event 5miles)       

} 

V. SUMMARY AND FUTURE RESEARCH 
 

In this paper we have discussed how RDF can serve as 

a basis for an event database where events are defined as 

‘things’ that (1) require RDFS++ reasoning because events 

have types, (2) require geospatial reasoning because events 

happen somewhere, (3) require temporal reasoning 

because events nearly always have a start and duration and 

(4) require some form of social analysis because most 

interesting events have one or more actors.  

We demonstrated how all of these capabilities can be 

used in one query language, in this case Prolog. And we 

expect that in the near future these capabilities will be 

available in SPARQL as well.  

The primary research effort for the current version of 

the query framework is to enhance query-optimization. 

Notice that in the example shown above, most clauses are 

not direct matches against the database but functors that do 

computations. Some of these functors can act both as 

generators and as filters (as is common in Prolog). In case 

a functor acts as generator we need to research better 

statistical predictions for how many solutions can be 

expected so that we can do better re-ordering of clauses. 
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