
Exploiting Semantics for Personalized Story Creation

Mark D. Wood
Eastman Kodak Company
mark.d.wood@kodak.com

Abstract

The task of creating albums or multimedia output
from consumer content is becoming increasingly
difficult as the amount of content grows. This work
presents a system for using semantic information to
automate the process of selecting and combining
digital assets into summary presentations or
storylines, as well as determining triggers for when to
generate such content. The system obtains semantic
information from a variety of sources, including the
capture metadata, image and video understanding
algorithms, user profiles and third party ontologies;
all such semantic information is stored in a triple
store. Prolog-based rules leverage the triple store to
provide a knowledgebase for determining when to
create particular types of output and how to select
assets for such output. This knowledgebase greatly
simplifies the task of creating consumer-grade
multimedia content.

1. Introduction

The widespread use of digital capture devices,
including digital still cameras, video cameras, and
camera cell phones, has resulted in a burgeoning
growth in personal digital content. People capture this
content because they wish to preserve and relive or
share some moment or event, but the huge volume of
digital assets has resulted in many users feeling
overwhelmed and their captured content lies
underutilized, perhaps buried in some folder but
seldom, if ever, seen. While the pictures and video
have meaning for the person who captured them, that
meaning is seldom, if ever, understood by the digital
systems people use to store and access their content.

The Semantic System Demonstration Framework,
or SSDF, leverages the semantics associated with
digital assets to help consumers organize and enjoy
their digital assets. The key principle is that the
system attempts to understand the meaning or

significance of each digital asset, and to leverage that
understanding to automate organization and retrieval.
The emphasis in this work is leveraging semantics to
automate the process of constructing albums or
multimedia presentations, but the same technology can
also enable semantically rich interfaces for searching
and browsing through a personal or shared multimedia
collection.

The SSDF harnesses semantic information
associated with the digital asset, information about the
user, and third-party information to automate the
process of creating albums or multimedia
presentations. The system first determines an
appropriate story/event theme and product
representation, and then selects appropriate assets to
create an actual album or multimedia presentation.
While the created output may not be exactly what the
user would have created, the system has gotten the
user past the initial hurdle. The user may decide the
80% solution is good enough, or the user may choose
to spend a little time tweaking the output to further
reflect the user’s preferences.

Others in related work have attempted to automate
some aspects of content management by using
semantic information. Creating albums requires first
selecting the appropriate assets, and then determining
how to arrange them spatially and temporally. In [1],
the authors present a system that uses semantic
information to inform the process of laying out
content, by grouping assets based upon metadata
associated with the asset such as capture time or
orientation of the main subject. The Story Picturing
Engine [2] uses semantic information to help illustrate
text-based stories. Hyperdoc [3] uses templates to
drive the selection of assets to tell a particular story.
The work described here is differentiated in that it uses
semantic information to determine both when a
particular type of story should be created, as well as
what assets should be selected to go into that story.
Furthermore, this system is designed to work with
thousands of individual assets, selecting only those
appropriate for a particular story, using rule-based
logic.

The IEEE International Conference on Semantic Computing

978-0-7695-3279-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSC.2008.10

411

The IEEE International Conference on Semantic Computing

978-0-7695-3279-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSC.2008.10

402

Section 2 briefly outlines the structure of the SSDF
and describes the types of semantic information used
by the system. Section 3 describes the rule-based
inferencing used in the SSDF; Sections 4 and 5
describe how the rule system is used to select stories
and assets to populate those stories. Section 6
discusses the lessons learned from building this system
and Section 7 concludes the paper.

2. System Architecture

Figure 1 illustrates the high-level system
components comprising the SSDF. The SSDF is
architected as a client-server system. The overall
framework contains other system components not
relevant to this discussion; such components are not
shown here.

Picture and video assets are uploaded into the
system into the asset store. The system runs semantic
indexers over the assets as they are added, with the
extracted and derived metadata stored into the triple
store. The SSDF uses the AllegroGraph triple store
[4], a commercial product sold by Franz Inc. The
Smart Story Initiator evaluates rules, using the
inferencing engine, to determine if one or more
products should be created. If so, the Smart Story
Initiator calls the Smart Asset Selector to obtain the
appropriate set of assets, and then creates the XML-
based product representation. The current system
renders the XML-based description to SVG or HTML.
Finally, the Story Notifier component informs the user

when new products are available for viewing. The
current system uses an RSS-based notification
mechanism, with the created story viewed using a web
browser. The arrows in Figure 1 illustrate the general
flow of data, but note that the Story Suggester is run as
an independent agent and may suggest stories both
based upon recent uploads and other system events.

2.1. User and Asset Metadata

Users may upload both still and video digital asset
types. The server stores such assets in a file system-
based asset store, and then invokes a variety of
semantic indexers that run against the freshly
introduced assets. These semantic indexers include
algorithms for face detection and people recognition
[5], scene classification [6], image appeal or value [7],
event clustering and classification [8], and video
analysis. In addition, the indexers extract metadata
normally recorded as part of the digital asset at the
time of capture. For example, images stored using the
Exif file format typically include the capture date and
time and various camera settings. Captured metadata
may also include GPS information or even an
indication of the photographer’s mood [9].

An important part of the semantic indexing process
is the grouping and classification of assets into events.
The temporal event clustering algorithm groups a
series of assets into super events, events, and
subevents, based upon an analysis of the capture
timestamps and image similarity. A set of pictures
taken over several days during a vacation might be
grouped together into a super event, with the different
picture-taking events occurring during the vacation,
such as visiting a historical site, forming an event. An
event might be further broken down into subevents if
the scene content changed significantly from one
picture to another, as would occur, for example, when
taking pictures both inside and outside a monument.
For each super event, event, and subevent detected by
the temporal event recognizer, the system creates a
separate node representing the event object, with the
node pointing to the appropriate constituent elements.
For example, the node for the super event would point
to the nodes for the events making up the super event,
with those nodes in turn pointing to the appropriate
subevents, which finally point to the various assets.
Each of the various event nodes in turn might have
other metadata associated with it. For example, the
system uses probabilistic techniques to compute an
event type classification for super events, using
categories such as “outdoor sports” or “family
moment.”

Many of the asset selection rules depend upon
knowledge of who is portrayed in a given asset. This

Story Engine Components

Story Viewer
(e.g., RSS-based)

Asset Store
Story Notifier

Service

Smart
Story

Suggester

Smart
Asset

Selector

Story Rulesets

Inference Engine

Semantic
Indexers

Triple store

Asset
Uploader

Figure 1 System Architecture

412403

information may be obtained automatically, using
people recognition algorithms, or the user may
explicitly label pictures as containing specific
individuals. Windows Vista provides an efficient
mechanism whereby the user can rapidly label large
sets of pictures; the system understands the metadata
elements introduced by Vista and translates them into
the appropriate set of triple store statements. For each
metadata attribute associated with a particular asset,
whether the metadata was recorded by the capture
device, derived algorithmically, or manually specified
by the user, a corresponding statement is generated
and added to the triple store. Figure 2 illustrates some
metadata that might be associated with a particular
image asset, 986_102_990.jpg, using the N-Triples
representation [10]. The first line states that the asset
portrays a person identified by the specified URI; the
next line states that the asset is of type JPEG; the
following line states that one face was detected in the
asset, and so on.

In addition to containing metadata generated by the
various semantic indexers, the triple store also
contains user profile information and product
information. For example, for a given system user, the
system could record information about a user’s family
as well as a user’s interests and hobbies. The user
may enter additional metadata for each person known
to the system. By entering parent/child and spousal
relationships, the system will be able to infer
additional familial relationships such as aunt or
grandparent. Other information such as birthdays,
anniversaries, addresses, and personal interests or
hobbies may also be entered into the system.

Additional types of metadata not supported by the
user interface may be directly added to the system by
encoding the information in an RDF-based file and
loading the file into the triple store. The RDF data
model allows a potentially arbitrary set of facts to be
associated with a given person or object.

2.2. Other Metadata

A significant part of the reasoning carried out by
the system pertains to output product type selection.
The information the system needs to reason about
product types comes from the system output product
catalog. Each output type in the system is identified
by a guid, which is trivially made into a URI. At a
minimum, the triple store must contain the list of
available output types. Additional metadata may be
associated with a given output type. For example, a
certain output type may be associated with a particular
holiday or hobby. Other metadata might include the
output modality or stylistic theme.

Additional third-party sources of information such
as the U.S. Government’s Geographic Name
Information System (GNIS) data may also be added to
the triple store. The GNIS database provides
information mapping commonly used placenames to
latitude and longitude coordinates as well as feature
classes (e.g., park, school, church, etc.). Such
information may be readily converted into an RDF
format and then loaded into the triple store. Other
sources of knowledge include calendars of commonly
observed holidays, third-party ontologies, and other
types of common sense knowledge.

<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/SceneContent/Contains/Person> <urn:83EB2D0B-26B4-8CB0-3DB0-F1A0AB3B55B7> .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/SceneContent/MIMEType> "image/jpeg" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/SceneContent/Face/Faces> "1" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/CaptureConditions/ShutterSpeed> "6" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/SceneContent/ImageCaptureDateTime/ImageCaptureDateTime> "2005-10-02 10:59:49" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/ImageContainer/Orientation> "1" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/SceneContent/ImageValueIndex/Technical> "4" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/ImageContainer/Height> "1728" .
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG>
<http://pstc.rl.kodak.com/properties/ImageContainer/Width> "2304" .

Figure 2 Sample Metadata

413404

2.3. Rule-Based System Components

The primary system components exploiting the
semantic understanding infrastructure are the Story
Suggester and the Smart Asset Selector. The Story
Suggester invokes Prolog rules to determine what
story to produce, if any. The Smart Asset Selector
references an XML file containing a set of separate
rulesets, where each ruleset is a set of rules defined
typically in Prolog, although SPARQL-based rules are
also supported. The Smart Asset Selector, in
response to a query to produce the required assets for a
specified story, evaluates the associated rules and then
collates the final results as needed. Together these
components provide the basis for the story generation
functionality.

3. Rule-based Inferencing

The story generation component of the SSDF
functions as a knowledgebase system, with its
behavior driven by a set of extensible rules specifying
both the circumstances under which stories should be
suggested and how the assets should be selected to
create those stories. As previously noted, the core of
the rule-based reasoning is written in Prolog. Our
version of Prolog, Allegro Prolog, uses S-expression
syntax as opposed to the usual Clocksin & Mellish
syntax. This version of Prolog was chosen because it
is tightly integrated into the AllegroGraph triple store.
The rules ultimately query the triple store to access the
various types of system metadata.

AllegroGraph 2.5 provides two basic functors for
querying the triple store from Prolog. The q functor
takes three arguments, each of which may be bound or
unbound, with the arguments corresponding to the
subject, predicate, and object of a statement. The q
functor returns the set of variable bindings for the
unbound variables such that the corresponding subject,
predicate, and object corresponds to a statement in the
triple store. A variation of the q functor, the qs
functor, returns the set of variable bindings for the
unbound variables such that the corresponding subject,
predicate, and object correspond to a statement in the
triple store, or where such a statement could be
inferred using certain RDFS or OWL-based
inferencing rules.

The Prolog rulebase was divided into a set of
different Prolog definitions. For notational simplicity
and to abstract metadata implementation details, most
of the commonly accessed pieces of metadata were
defined as simple Prolog rules where the body of the
rule is a reference to the appropriate q operator. For
example, the rule videoHasLength is defined by the
following clause:

(<-- (videoHasLength ?video ?len)
(q ?video !ek:ImageContainer/Movie/Duration

?len))
In this S-expression syntax, the first parenthesized

subexpression denotes the head of the Prolog rule; the
subsequent parenthesized subexpressions denote the
goals making up the body of the rule. This clause
would be written in traditional Prolog syntax as the
following:

videoHasLength(?video ?len) :-
q(?video !ek:ImageContainer/Movie/Duration ?len)
 The term !ek:ImageContainer/Movie/Duration is

an abbreviation supported by AllegroGraph; it is
expanded to the appropriate full URI, substituting for
the prefix ek: the appropriate namespace substitution.

In addition to simple rules serving as metadata
accessors, the Prolog rule base contains an extensive
set of rules describing personal relationships. These
rules reference the metadata associated with people,
including gender and the three types of interpersonal
relationships currently supported by the system—
parent, spouse, and friend—to define concepts such as
mother, grandmother, aunt, etc. The system represents
the marriage of two individuals by creating a new
node to represent the union; metadata associated with
the marriage such as the anniversary and possible
divorce date are associated with that marriage node.
The rule

(<-- (spouse ?x ?y)
(q ?x !ek:Person/HasMarriage ?m)
(q ?y !ek:Person/HasMarriage ?m)
(not (personEquals ?x ?y))
(not (q ?m !ek:Person/Marriage/DivorcedOn ?d)))
defines two people as being currently married if

they both link to the same marriage node and that
marriage node does not contain a divorce attribute.

Sections 2.1 and 2.2 described the types of
metadata used by the system. Some of this metadata is
based upon probabilistic algorithms. Additional rules
may be specified referencing such metadata to
mitigate the uncertainty. For example, the event
classifier described in Section 2.1 may produce the
classification “family moment” using Bayesian
techniques based on various picture attributes. The
validity of this classification may be further tested by a
rule that explicitly tests to see if any of the people
portrayed in the picture are in fact close relatives of
the user.

4. The Story Suggester

The knowledgebase for selecting when to create
stories uses two types of rules: one type based upon
the date and another based upon event nodes. The
story triggers need to determine two dimensions when

414405

deciding that a particular story should be created: they
need to pick the appropriate product from the catalog
and the appropriate ruleset for selecting the assets to
go into that product. An arbitrary number of rules can
be added to the system to cover the various likely (and
not so likely) story generation opportunities.

4.1. Calendar-Driven Stories

To illustrate calendar-driven stories, suppose user
Alex is married to Ann and they have young children.
Mother’s Day is coming up; the system anticipates this
and automatically creates a Mother’s Day Surprise
Story one week in advance for Alex to preview. The
story is a multimedia creation, which includes pictures
of Ann and her family over the past few years.

The date-driven rules for triggering story
generation consider what stories might be appropriate
given a particular date. Typical dates of interest
include birthdays, anniversaries, and holidays.

In the current implementation of calendar-driven
stories, the trigger rules determine several parameters,
including the user for whom the story should be
produced, a potential recipient of the product, the
output type, and the ruleset to use in picking assets.

Rule R-1 illustrates one possible rule to determine
whether a Mother’s Day album should be created for a
user.

R-1. Given target date Date, suggest to user User
story type “Mother’s Day Album” and product
“Mother’s Day Multimedia Album” intended
for recipient Recipient if:

R-1.1. Target date Date is a known recurring
holiday Holiday

R-1.2. Holiday is Mother’s Day
R-1.3. The system user User is the spouse of the

recipient Recipient
R-1.4. The recipient Recipient is a mother
In the Prolog equivalent for this rule, the user,

recipient, and product are unbound variables; the
Prolog inferencing engine seeks to satisfy this goal
with a particular user, recipient, and product variable
binding. In the example above, the user would be
Alex with the recipient being his wife and the product
being the Mother’s Day multimedia album.

4.2. Event-Driven Stories

In addition to choosing stories based upon an
upcoming date, the system may suggest a story based
upon a recently occurring event. For example,
suppose a user has returned from vacation and has just
uploaded their pictures into the system; the system
might automatically put those pictures and memories

into an album or multimedia presentation for the user
to enjoy and share with others.

In general, the event-driven story triggers consider
a particular event and determine whether or not an
appropriate story could be generated from that event.
This trigger uses ontological reasoning to determine if
the event classification for the event corresponds to a
user’s hobby or interest for which the system offers an
appropriately themed product. To execute this rule,
the triple store must contain:

• An interest/activity ontology
• A product catalog ontology, with the ability to

specify that specific products go with specific
interest/activities

• Statements associating people with interests
from the interest/activity ontology

The interest/activity ontology defines an extensible
list of possible activities, interests, and hobbies. For
example, a (small) subset of the ontology might look
like:
(1) Musical Activities

1.a) Singing
1.b) Playing a musical instrument

(2) Sporting Activities
2.a) Outdoor sports

2.a.1) Baseball
2.a.2) Soccer
2.a.3) Football

(3) Social Gatherings
3.a) Parties

3.a.1) Birthday parties
3.b) Solemn Occasions
A full ontology would obviously contain far more

information. While the system currently uses a
custom-designed ontology, one or more appropriate
third-party ontologies may also be used.

As previously noted, the system uses probabilistic
techniques to categorize super events. The triple store
maps the general event category “outdoor sports” to
the appropriate outdoor sports class in the ontology.
As technologies for event classification advance, the
classifiers will be able to more narrowly map events to
classes within the interests and hobbies ontology.

The product catalog likewise contains a set of
possible product types along with the activities or
interests with which the product might be associated.

Using this data, the system includes the following
story generation trigger:

R-2. For a set of assets comprising a given event
Event, suggest product Product for user User
if:

R-2.1. User owns event Event
R-2.2. Event has classification EventType
R-2.3. Event contains picture(s) featuring Person
R-2.4. User is a parent of Person

415406

R-2.5. Person likes activity ActivityType
R-2.6. Product goes with activity ActivityType
R-2.7. Activity is a subclass of EventType
Given the above, the system can suggest a themed

story based upon an upload of a set of digital media
assets. For example, suppose a father Alex uploads a
set of pictures from his daughter Jane’s recent Little
League game, and the system knows the following
information:
• The event is classified as an outdoor sport event.
• Baseball is a type of outdoor sport.
• The event contains Jane, a child of the user.
• Jane likes baseball.
• The baseball album product is associated with

the activity baseball.
Based on this information, the rule R-2 would be

satisfied, causing the system to create a baseball-
themed album for Alex featuring Jane’s recent
sporting event. Clearly this rule is overly simplistic; a
production-quality rule might consider whether there
might be other sports Jane is interested in, and whether
the time of the event was a time of the year when
baseball was commonly played, etc.

5. Smart Asset Selectors

Once the system has identified a candidate story to
create for the user, the system must then select the
appropriate set of assets to populate that story. The
SSDF provides a mechanism to define an arbitrary
number of rulesets, where each ruleset consists of a set
of rules resulting in potentially the selection of one or
more assets. Rulesets are named and stored in an
XML-based file containing the Prolog or SPARQL
definition as well as certain other modifiers controlling
how the rule results are interpreted; a Java-based
mechanism is used to control the execution of the
appropriate ruleset.

Referring back to the Mother’s Day album of
Section 4.1, the following rules might be used to
actually select the appropriate assets to create the
story:

• Select the two best pictures of the mother alone
from any year.

• Select the three best pictures of the mother
with all children from the past year.

• Select the single best picture of the mother
with each child individually from any year.

• Select the two best pictures of the mother with
her mother from any year.

• Select the three best pictures of the mother
with family (children and spouse) from past
year, from distinct subevents.

• Select the two best short video clips, less than
60 seconds, where the video clip is from a set
of pictures classified as a “Family Moment.”

Figure 3 illustrates the Mother’s Day asset selection
ruleset, showing specifically the Prolog rules
corresponding to the first and last rules identified
above. Before evaluating rules, the system substitutes
the appropriate values for #OWNER, #PERSON, and
#EVENT. Where applicable, the string #OWNER is
substituted with the user’s URI; #PERSON is
substituted with the URI of the person suggested as the
subject by the story trigger, and #EVENT is
substituted with the URI denoting the event identified
by the story trigger. In the Mother’s Day example, the
#OWNER would be replaced with the URI for Alex,
and #PERSON would be replaced with the URI for
Ann.

Each Prolog rule may be satisfied by one or more
variable bindings. The first parenthesized expression
in the definition portion of the rule declares the
unbound variables. The asset selection system expects
each rule to list three unbound variables, resulting in
each rule returning a set of triples. The use of triples
here is unrelated to the concept of subject, predicate,
and object within the triple store; the system happens
to use three values in collating the results of the
various rules making up a rule set. The first variable
is always bound to the asset. The second variable,
given as ?date in both rules, provides a value against
which to sort, in the case where the assets returned by
the different rules are to be returned in a sorted order.
In the example ruleset, the attribute sortResults is
false, so this sorting step is not carried out. The third
variable, ?ivi in the first rule, is used for the purposes
of sorting the values returned by a single rule. For
example, the first rule matches all of the pictures
containing only the mother. As this could potentially
be a large number of pictures, the max attribute on the
rule element limits the number to no more than two
assets. To pick which of the assets should be returned
from all of the assets that satisfy the rule, the assets are
sorted by the third variable, ?ivi, with the top two
assets actually returned. The last two clauses cause
?ivi and ?date to be bound to the image value index
and capture date for the asset, enabling the sorting to
be carried out.

In addition to the sorting and selection done after
the rules are evaluated, the Prolog rules themselves
may also incorporate the logic necessary to select the
appropriate number of assets. In some cases the
selection criteria are better expressed in a more
procedural language. The system includes a variety of
predefined relations to pick the best from among a set
of assets according to some criteria, where the relation

416407

is implemented using Prolog and/or Lisp as
appropriate.

6. Discussion

The process of selecting and populating multimedia
story products lends itself to being expressed as a
knowledgebase. Simple rules can be readily defined
for when to create stories and how to choose assets to
go into those stories. These definitions can be readily
modified and extended, even while the system is
running.

A number of issues surface in constructing a rule-
based system for story generation. The parameters fed
into the reasoner often were computed using
probabilistic means and have an associated degree of
uncertainty. This uncertainty is handled by applying
thresholds to make binary decisions; additional
constraints or checks could be expressed as rules.
Future research may wish to consider whether the use
of other techniques for handling uncertainty would be
better applied.

In a similar manner, the current implementation
requires the use of rigid ontologies in describing
hobbies and interests. Few such ontologies exist, and
again, the use of a rigid ontology does not always
correspond to real world situations.

Understanding who and what an image portrays is
critical to story generation, yet the technologies for
people and object recognition are still in their infancy.

This problem can be alleviated by allowing manual
tagging, but such tagging may be tedious for the
consumer and runs counter to the goal of automatic
story creation. As these technologies continue to
mature, this will be less of an issue.

The current implementation separates the process
of selecting a story and choosing the assets for a
particular story. However, the availability of assets
may influence the choice of story. In the future, the
system should support rules for story triggering that
consider whether sufficient assets are available to
adequately populate the story.

This knowledge system could have been based on a
variety of different database types. Besides a triple
store, the other obvious choice would have been a
relational database. While relational databases have
rightfully earned their place as a powerful tool for
storing structured data, they are less suited for
representing semantic networks [11]. With the
relational data model, introducing new types of data
typically requires changing the database schema:
either new tables need to be added, or the type of
existing tables must be changed. In the RDF data
model, new data is simply added to the system.
However, this flexibility comes at a cost: a triple store
requires an explicit triple for each piece of metadata,
resulting in potentially redundant storage of the
subject (the asset id) and predicate (the metadata type).

Although the system uses the RDF data model for
reasoning and can make use of RDFS and OWL-based
reasoners, the bulk of the query logic is expressed in
Prolog. Story triggers are exclusively written in
Prolog. Rules used by the Smart Asset Selector may
be written in either Prolog or SPARQL. The
SPARQL query language for RDF provides a
straightforward means for querying a triple store for
resources that satisfy a particular pattern. However,
SPARQL does not support inferencing, and so a
simple query requesting pictures of a person and the
person’s mother could not be directly expressed using
SPARQL; the system would have had to infer the URI
for the mother before making the query. Likewise,
RDFS and OWL-based reasoning is of limited utility
in the current system. OWL-based reasoning lets one
infer the type of an object, but it does not let one infer
relationships between objects. For example, an OWL-
based reasoner might be able to infer that Frank is an
uncle, but it would not be able to infer that Frank is
Ann’s uncle. Consequently, most rules used by the
Smart Asset Selector are written in Prolog, which
gives complete flexibility and expressiveness.
Although Prolog is very expressive, writing efficient
Prolog code can be challenging at times. The close
tie-in between Prolog and Lisp in the AllegroGraph
product facilitated writing efficient rules, as the more

<ruleset name="MothersDayAlbum"
 friendlyName="Mothers' Day Album" sortResults="false">
 <rule max=“2" type=”prolog”>
 <desc>Pictures only containing #PERSON</desc>
 <definition>
 (?pic ?date ?ivi)
 (containsOnlyIdentifiedPerson ?pic #PERSON)
 (belongsTo ?pic #OWNER)
 (hasIVI ?pic ?ivi)
 (capturedOn ?pic ?date)
 </definition>
 </rule>
 ...
 <rule max="2" type=”prolog”>
 <desc>video snippet</desc>
 <definition>
 (?movie ?date ?date)
 (eventIsOfEventType ?e !!"FamilyMoment")
 (eventContains ?e ?movie)
 (assetIsVideo ?movie)
 (videoHasLength ?movie ?len)
 (literalStringIsLT ?len "00:00:60")
 (capturedOn ?movie ?date)
 </definition>
 </rule>
</ruleset>

Figure 3 Sample Ruleset

417408

computationally expensive components can be easily
expressed in Lisp, if necessary.

A detailed performance analysis has not yet been
carried out. However, on a 32-bit dual processor 2.4
GHz machine with approximately 8000 digital assets
from which to select, executing individual rules takes
between approximately 35 ms and approximately 400
ms, with most rules in our test set executing in under
100 ms. The rule taking 400 ms was particularly
complex, searching for the best pictures containing
various combinations of people over a reasonably
large people set.

A variety of multimedia product types have been
implemented and tested on previously collected
consumer imagery, including the Mother’s Day and
special event stories described in this paper, a tribute
to a person story, a yearly calendar, and a personalized
group event summary. Further work is needed to
verify that the chosen results are indeed acceptable to
consumers. Note that the consumer’s satisfaction with
the final product is dependent upon both which assets
are selected and how they are presented in the output
product. To give a preliminary assessment of the
system’s utility, it was used to produce output for two
externally recruited consumers, who were then given
the opportunity to comment on the resulting products.
The main comment noted on the choice of assets was
that the system did not include as many assets as the
consumer would have preferred, but that could be
easily accommodated by a simple change to the rules.
Additional research would be needed to determine
what elements consumers typically expect to go into
different types of products, and to what extent the
rules need to be personalized for individual
preferences. In many cases, an automatically created
story may function as a trigger to get the consumer to
do more with their pictures; if the story requires only
minimal editing by the consumer, then it will be a
success.

7. Summary

This work demonstrates the feasibility of using a
knowledgebase to create consumer multimedia stories
from a user’s collection of pictures and videos. This
framework quickly produced compelling stories by
selecting a small number of assets out of thousands of
assets within a collection. The RDF data model
combined with a logic programming language enables
easy construction and extension of rules driving
system behavior. The SSDF implements these
concepts to produce selective consumer-grade albums
and multimedia presentations from thousands of
consumer digital assets.

8. Acknowledgments

Catherine Newell contributed the high-level
description of the stories used in this work. Bryan
Kraus, Kevin Delong, Kathleen Costello and
numerous other people participated in the
development and testing of the broader SSDF system.
Alexander Loui, Marcello Balduccini, Dhiraj Joshi,
and the anonymous reviewers provided feedback on
earlier versions of this paper.

9. References

[1] N. Diakopoulos and I. Essa, “Mediating Photo Collage
Authoring,” in ACM Symposium on User Interface
Software and Technology (UIST), Seattle, WA 2005.

[2] D. Joshi, J. Z. Wang, and J. Li, “The Story Picturing
Engine-A System for Automatic Text Illustration,”
ACM Transactions on Multimedia Computing,
Communications and Applications, vol. 2, pp. 1-22,
2006.

[3] D. E. Millard, C. Bailey, T. Brody, D. Dupplaw, W.
Hall, S. Harris, K. R. Page, G. Power, and M. J. Weal,
“Hyperdoc: An Adaptive Narrative System for
Dynamic Multimedia Presentations,” University of
Southampton ECSTR-IAM02-006 2003.

[4] Franz Inc., “AllegroGraph Product Description,” 2008.
http://agraph.franz.com/allegrograph/.

[5] A. Gallagher, M. Das, and A. Loui, “User-Assisted
People Search in Consumer Image Collections,” in
IEEE Intern. Conf. on Multimedia and Expo (ICME),
Beijing, China: IEEE, July 2-5 2007.

[6] J. Luo and M. Boutell, “Natural Scene Classification
Using Overcomplete ICA,” Pattern Recognition, vol.
38, pp. 1507-1519, 2005.

[7] A. Savakis, S. Etz, and A. Loui, “Evaluation of Image
Appeal in Consumer Photography,” in SPIE Human
Vision and Electronic Imaging, January 2000.

[8] A. Loui and A. Savakis, “Automated Event Clustering
and Quality Screening of Consumer Pictures for Digital
Albuming,” IEEE Transactions on Multimedia, vol. 5,
pp. 390-402, 2003.

[9] E. A. Fedorovskaya, S. Endrikhovski, T. A. Matraszek,
K. A. Parulski, C. A. Zacks, K. M. Taxier, M. J. Telek,
F. Marino, and D. Harel, “Imaging Method and System
Using Affective Information,” United States Patent
7,233,684, 2007.

[10] J. Grant and D. Beckett, Eds., "RDF Test Cases,"
World Wide Web Consortium, February, 2004.
http://www.w3.org/TR/rdf-testcases/.

[11] J. Aasman, “Using Social Network Analysis,
Geotemporal Reasoning, and RDFS++ Reasoning for
Business Intelligence,” tutorial at The 6th International
Semantic Web Conference, November, 2007.

418409

