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Abstract 
 

The task of creating albums or multimedia output 
from consumer content is becoming increasingly 
difficult as the amount of content grows.  This work 
presents a system for using semantic information to 
automate the process of selecting and combining 
digital assets into summary presentations or 
storylines, as well as determining triggers for when to 
generate such content.  The system obtains semantic 
information from a variety of sources, including the 
capture metadata, image and video understanding 
algorithms, user profiles and third party ontologies; 
all such semantic information is stored in a triple 
store.  Prolog-based rules leverage the triple store to 
provide a knowledgebase for determining when to 
create particular types of output and how to select 
assets for such output.  This knowledgebase greatly 
simplifies the task of creating consumer-grade 
multimedia content. 

1. Introduction 

The widespread use of digital capture devices, 
including digital still cameras, video cameras, and 
camera cell phones, has resulted in a burgeoning 
growth in personal digital content.  People capture this 
content because they wish to preserve and relive or 
share some moment or event, but the huge volume of 
digital assets has resulted in many users feeling 
overwhelmed and their captured content lies 
underutilized, perhaps buried in some folder but 
seldom, if ever, seen.  While the pictures and video 
have meaning for the person who captured them, that 
meaning is seldom, if ever, understood by the digital 
systems people use to store and access their content. 

The Semantic System Demonstration Framework, 
or SSDF, leverages the semantics associated with 
digital assets to help consumers organize and enjoy 
their digital assets.  The key principle is that the 
system attempts to understand the meaning or 

significance of each digital asset, and to leverage that 
understanding to automate organization and retrieval.  
The emphasis in this work is leveraging semantics to 
automate the process of constructing albums or 
multimedia presentations, but the same technology can 
also enable semantically rich interfaces for searching 
and browsing through a personal or shared multimedia 
collection. 

The SSDF harnesses semantic information 
associated with the digital asset, information about the 
user, and third-party information to automate the 
process of creating albums or multimedia 
presentations.  The system first determines an 
appropriate story/event theme and product 
representation, and then selects appropriate assets to 
create an actual album or multimedia presentation. 
While the created output may not be exactly what the 
user would have created, the system has gotten the 
user past the initial hurdle.  The user may decide the 
80% solution is good enough, or the user may choose 
to spend a little time tweaking the output to further 
reflect the user’s preferences. 

Others in related work have attempted to automate 
some aspects of content management by using 
semantic information.  Creating albums requires first 
selecting the appropriate assets, and then determining 
how to arrange them spatially and temporally.  In [1], 
the authors present a system that uses semantic 
information to inform the process of laying out 
content, by grouping assets based upon metadata 
associated with the asset such as capture time or 
orientation of the main subject.  The Story Picturing 
Engine [2] uses semantic information to help illustrate 
text-based stories.  Hyperdoc [3] uses templates to 
drive the selection of assets to tell a particular story.  
The work described here is differentiated in that it uses 
semantic information to determine both when a 
particular type of story should be created, as well as 
what assets should be selected to go into that story.  
Furthermore, this system is designed to work with 
thousands of individual assets, selecting only those 
appropriate for a particular story, using rule-based 
logic. 
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Section 2 briefly outlines the structure of the SSDF 
and describes the types of semantic information used 
by the system.  Section 3 describes the rule-based 
inferencing used in the SSDF; Sections 4 and 5 
describe how the rule system is used to select stories 
and assets to populate those stories.  Section 6 
discusses the lessons learned from building this system 
and Section 7 concludes the paper. 

2. System Architecture 

Figure 1 illustrates the high-level system 
components comprising the SSDF.  The SSDF is 
architected as a client-server system.  The overall 
framework contains other system components not 
relevant to this discussion; such components are not 
shown here.   

Picture and video assets are uploaded into the 
system into the asset store.   The system runs semantic 
indexers over the assets as they are added, with the 
extracted and derived metadata stored into the triple 
store.  The SSDF uses the AllegroGraph triple store 
[4], a commercial product sold by Franz Inc.  The 
Smart Story Initiator evaluates rules, using the 
inferencing engine, to determine if one or more 
products should be created.  If so, the Smart Story 
Initiator calls the Smart Asset Selector to obtain the 
appropriate set of assets, and then creates the XML-
based product representation.  The current system 
renders the XML-based description to SVG or HTML.  
Finally, the Story Notifier component informs the user 

when new products are available for viewing.  The 
current system uses an RSS-based notification 
mechanism, with the created story viewed using a web 
browser.  The arrows in Figure 1 illustrate the general 
flow of data, but note that the Story Suggester is run as 
an independent agent and may suggest stories both 
based upon recent uploads and other system events. 

2.1. User and Asset Metadata 

Users may upload both still and video digital asset 
types.  The server stores such assets in a file system-
based asset store, and then invokes a variety of 
semantic indexers that run against the freshly 
introduced assets.  These semantic indexers include 
algorithms for face detection and people recognition 
[5], scene classification [6], image appeal or value [7], 
event clustering and classification [8], and video 
analysis.  In addition, the indexers extract metadata 
normally recorded as part of the digital asset at the 
time of capture.  For example, images stored using the 
Exif file format typically include the capture date and 
time and various camera settings.  Captured metadata 
may also include GPS information or even an 
indication of the photographer’s mood [9].  

An important part of the semantic indexing process 
is the grouping and classification of assets into events.  
The temporal event clustering algorithm groups a 
series of assets into super events, events, and 
subevents, based upon an analysis of the capture 
timestamps and image similarity.  A set of pictures 
taken over several days during a vacation might be 
grouped together into a super event, with the different 
picture-taking events occurring during the vacation, 
such as visiting a historical site, forming an event.  An 
event might be further broken down into subevents if 
the scene content changed significantly from one 
picture to another, as would occur, for example, when 
taking pictures both inside and outside a monument.  
For each super event, event, and subevent detected by 
the temporal event recognizer, the system creates a 
separate node representing the event object, with the 
node pointing to the appropriate constituent elements.  
For example, the node for the super event would point 
to the nodes for the events making up the super event, 
with those nodes in turn pointing to the appropriate 
subevents, which finally point to the various assets.  
Each of the various event nodes in turn might have 
other metadata associated with it.  For example, the 
system uses probabilistic techniques to compute an 
event type classification for super events, using 
categories such as “outdoor sports” or “family 
moment.” 

Many of the asset selection rules depend upon 
knowledge of who is portrayed in a given asset.  This 
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information may be obtained automatically, using 
people recognition algorithms, or the user may 
explicitly label pictures as containing specific 
individuals.  Windows Vista provides an efficient 
mechanism whereby the user can rapidly label large 
sets of pictures; the system understands the metadata 
elements introduced by Vista and translates them into 
the appropriate set of triple store statements.  For each 
metadata attribute associated with a particular asset, 
whether the metadata was recorded by the capture 
device, derived algorithmically, or manually specified 
by the user, a corresponding statement is generated 
and added to the triple store.  Figure 2 illustrates some 
metadata that might be associated with a particular 
image asset, 986_102_990.jpg, using the N-Triples 
representation [10].  The first line states that the asset 
portrays a person identified by the specified URI; the 
next line states that the asset is of type JPEG; the 
following line states that one face was detected in the 
asset, and so on. 

In addition to containing metadata generated by the 
various semantic indexers, the triple store also 
contains user profile information and product 
information.  For example, for a given system user, the 
system could record information about a user’s family 
as well as a user’s interests and hobbies.  The user 
may enter additional metadata for each person known 
to the system.  By entering parent/child and spousal 
relationships, the system will be able to infer 
additional familial relationships such as aunt or 
grandparent.  Other information such as birthdays, 
anniversaries, addresses, and personal interests or 
hobbies may also be entered into the system. 

Additional types of metadata not supported by the 
user interface may be directly added to the system by 
encoding the information in an RDF-based file and 
loading the file into the triple store.  The RDF data 
model allows a potentially arbitrary set of facts to be 
associated with a given person or object. 

2.2. Other Metadata 

A significant part of the reasoning carried out by 
the system pertains to output product type selection.  
The information the system needs to reason about 
product types comes from the system output product 
catalog.  Each output type in the system is identified 
by a guid, which is trivially made into a URI.  At a 
minimum, the triple store must contain the list of 
available output types.  Additional metadata may be 
associated with a given output type.  For example, a 
certain output type may be associated with a particular 
holiday or hobby.  Other metadata might include the 
output modality or stylistic theme. 

Additional third-party sources of information such 
as the U.S. Government’s Geographic Name 
Information System (GNIS) data may also be added to 
the triple store.  The GNIS database provides 
information mapping commonly used placenames to 
latitude and longitude coordinates as well as feature 
classes (e.g., park, school, church, etc.).  Such 
information may be readily converted into an RDF 
format and then loaded into the triple store.  Other 
sources of knowledge include calendars of commonly 
observed holidays, third-party ontologies, and other 
types of common sense knowledge. 

<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/SceneContent/Contains/Person> <urn:83EB2D0B-26B4-8CB0-3DB0-F1A0AB3B55B7> . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/SceneContent/MIMEType> "image/jpeg" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/SceneContent/Face/Faces> "1" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/CaptureConditions/ShutterSpeed> "6" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/SceneContent/ImageCaptureDateTime/ImageCaptureDateTime> "2005-10-02 10:59:49" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/ImageContainer/Orientation> "1" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/SceneContent/ImageValueIndex/Technical> "4" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/ImageContainer/Height> "1728" . 
<http://rocrl998zb3t:8080/SSDFAssetServer/2/20070228/2/986_102_9990.JPG> 
<http://pstc.rl.kodak.com/properties/ImageContainer/Width> "2304" . 

Figure 2  Sample Metadata 
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2.3. Rule-Based System Components 

The primary system components exploiting the 
semantic understanding infrastructure are the Story 
Suggester and the Smart Asset Selector.  The Story 
Suggester invokes Prolog rules to determine what 
story to produce, if any.  The Smart Asset Selector 
references an XML file containing a set of separate 
rulesets, where each ruleset is a set of rules defined 
typically in Prolog, although SPARQL-based rules are 
also supported.    The Smart Asset Selector, in 
response to a query to produce the required assets for a 
specified story, evaluates the associated rules and then 
collates the final results as needed.  Together these 
components provide the basis for the story generation 
functionality. 

3. Rule-based Inferencing 

The story generation component of the SSDF 
functions as a knowledgebase system, with its 
behavior driven by a set of extensible rules specifying 
both the circumstances under which stories should be 
suggested and how the assets should be selected to 
create those stories.  As previously noted, the core of 
the rule-based reasoning is written in Prolog.  Our 
version of Prolog, Allegro Prolog, uses S-expression 
syntax as opposed to the usual Clocksin & Mellish 
syntax.  This version of Prolog was chosen because it 
is tightly integrated into the AllegroGraph triple store.  
The rules ultimately query the triple store to access the 
various types of system metadata. 

AllegroGraph 2.5 provides two basic functors for 
querying the triple store from Prolog.  The q functor 
takes three arguments, each of which may be bound or 
unbound, with the arguments corresponding to the 
subject, predicate, and object of a statement.  The q 
functor returns the set of variable bindings for the 
unbound variables such that the corresponding subject, 
predicate, and object corresponds to a statement in the 
triple store.  A variation of the q functor, the qs 
functor, returns the set of variable bindings for the 
unbound variables such that the corresponding subject, 
predicate, and object correspond to a statement in the 
triple store, or where such a statement could be 
inferred using certain RDFS or OWL-based 
inferencing rules. 

The Prolog rulebase was divided into a set of 
different Prolog definitions.  For notational simplicity 
and to abstract metadata implementation details, most 
of the commonly accessed pieces of metadata were 
defined as simple Prolog rules where the body of the 
rule is a reference to the appropriate q operator.  For 
example, the rule videoHasLength is defined by the 
following clause: 

(<-- (videoHasLength ?video ?len) 
(q ?video !ek:ImageContainer/Movie/Duration 

?len)) 
In this S-expression syntax, the first parenthesized 

subexpression denotes the head of the Prolog rule; the 
subsequent parenthesized subexpressions denote the 
goals making up the body of the rule.  This clause 
would be written in traditional Prolog syntax as the 
following: 

videoHasLength(?video ?len) :-  
q(?video !ek:ImageContainer/Movie/Duration ?len) 
 The term !ek:ImageContainer/Movie/Duration is 

an abbreviation supported by AllegroGraph; it is 
expanded to the appropriate full URI, substituting for 
the prefix ek: the appropriate namespace substitution. 

In addition to simple rules serving as metadata 
accessors, the Prolog rule base contains an extensive 
set of rules describing personal relationships.  These 
rules reference the metadata associated with people, 
including gender and the three types of interpersonal 
relationships currently supported by the system—
parent, spouse, and friend—to define concepts such as 
mother, grandmother, aunt, etc.  The system represents 
the marriage of two individuals by creating a new 
node to represent the union; metadata associated with 
the marriage such as the anniversary and possible 
divorce date are associated with that marriage node.  
The rule  

(<-- (spouse ?x ?y) 
(q ?x !ek:Person/HasMarriage ?m) 
(q ?y !ek:Person/HasMarriage ?m) 
(not (personEquals ?x ?y)) 
(not (q ?m !ek:Person/Marriage/DivorcedOn ?d))) 
defines two people as being currently married if 

they both link to the same marriage node and that 
marriage node does not contain a divorce attribute. 

Sections 2.1 and 2.2 described the types of 
metadata used by the system.  Some of this metadata is 
based upon probabilistic algorithms.  Additional rules 
may be specified referencing such metadata to 
mitigate the uncertainty.  For example, the event 
classifier described in Section 2.1 may produce the 
classification “family moment” using Bayesian 
techniques based on various picture attributes.  The 
validity of this classification may be further tested by a 
rule that explicitly tests to see if any of the people 
portrayed in the picture are in fact close relatives of 
the user. 

4. The Story Suggester 

The knowledgebase for selecting when to create 
stories uses two types of rules:  one type based upon 
the date and another based upon event nodes.  The 
story triggers need to determine two dimensions when 
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deciding that a particular story should be created: they 
need to pick the appropriate product from the catalog 
and the appropriate ruleset for selecting the assets to 
go into that product.  An arbitrary number of rules can 
be added to the system to cover the various likely (and 
not so likely) story generation opportunities. 

4.1. Calendar-Driven Stories 

To illustrate calendar-driven stories, suppose user 
Alex is married to Ann and they have young children.  
Mother’s Day is coming up; the system anticipates this 
and automatically creates a Mother’s Day Surprise 
Story one week in advance for Alex to preview.  The 
story is a multimedia creation, which includes pictures 
of Ann and her family over the past few years. 

The date-driven rules for triggering story 
generation consider what stories might be appropriate 
given a particular date.  Typical dates of interest 
include birthdays, anniversaries, and holidays.   

In the current implementation of calendar-driven 
stories, the trigger rules determine several parameters, 
including the user for whom the story should be 
produced, a potential recipient of the product, the 
output type, and the ruleset to use in picking assets.   

Rule R-1 illustrates one possible rule to determine 
whether a Mother’s Day album should be created for a 
user. 

R-1. Given target date Date, suggest to user User 
story type “Mother’s Day Album” and product 
“Mother’s Day Multimedia Album” intended 
for recipient Recipient if: 

R-1.1. Target date Date is a known recurring 
holiday Holiday 

R-1.2. Holiday is Mother’s Day 
R-1.3. The system user User is the spouse of the 

recipient Recipient 
R-1.4. The recipient Recipient is a mother 
In the Prolog equivalent for this rule, the user, 

recipient, and product are unbound variables; the 
Prolog inferencing engine seeks to satisfy this goal 
with a particular user, recipient, and product variable 
binding.  In the example above, the user would be 
Alex with the recipient being his wife and the product 
being the Mother’s Day multimedia album. 

4.2. Event-Driven Stories 

In addition to choosing stories based upon an 
upcoming date, the system may suggest a story based 
upon a recently occurring event.  For example, 
suppose a user has returned from vacation and has just 
uploaded their pictures into the system; the system 
might automatically put those pictures and memories 

into an album or multimedia presentation for the user 
to enjoy and share with others. 

In general, the event-driven story triggers consider 
a particular event and determine whether or not an 
appropriate story could be generated from that event.  
This trigger uses ontological reasoning to determine if 
the event classification for the event corresponds to a 
user’s hobby or interest for which the system offers an 
appropriately themed product.  To execute this rule, 
the triple store must contain: 

• An interest/activity ontology 
• A product catalog ontology, with the ability to 

specify that specific products go with specific 
interest/activities 

• Statements associating people with interests 
from the interest/activity ontology 

The interest/activity ontology defines an extensible 
list of possible activities, interests, and hobbies.  For 
example, a (small) subset of the ontology might look 
like: 
(1) Musical Activities 

1.a) Singing 
1.b) Playing a musical instrument 

(2) Sporting Activities 
2.a) Outdoor sports 

2.a.1) Baseball 
2.a.2) Soccer 
2.a.3) Football 

(3) Social Gatherings 
3.a) Parties 

3.a.1) Birthday parties 
3.b) Solemn Occasions 
A full ontology would obviously contain far more 

information.  While the system currently uses a 
custom-designed ontology, one or more appropriate 
third-party ontologies may also be used. 

As previously noted, the system uses probabilistic 
techniques to categorize super events.  The triple store 
maps the general event category “outdoor sports” to 
the appropriate outdoor sports class in the ontology.  
As technologies for event classification advance, the 
classifiers will be able to more narrowly map events to 
classes within the interests and hobbies ontology.   

The product catalog likewise contains a set of 
possible product types along with the activities or 
interests with which the product might be associated.  

Using this data, the system includes the following 
story generation trigger: 

R-2. For a set of assets comprising a given event 
Event, suggest product Product for user User 
if: 

R-2.1. User owns event Event 
R-2.2. Event has classification EventType 
R-2.3. Event contains picture(s) featuring Person 
R-2.4. User is a parent of Person 
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R-2.5. Person likes activity ActivityType 
R-2.6. Product goes with activity ActivityType 
R-2.7. Activity is a subclass of EventType 
Given the above, the system can suggest a themed 

story based upon an upload of a set of digital media 
assets.  For example, suppose a father Alex uploads a 
set of pictures from his daughter Jane’s recent Little 
League game, and the system knows the following 
information: 
• The event is classified as an outdoor sport event. 
• Baseball is a type of outdoor sport. 
• The event contains Jane, a child of the user. 
• Jane likes baseball.   
• The baseball album product is associated with 

the activity baseball. 
Based on this information, the rule R-2 would be 

satisfied, causing the system to create a baseball-
themed album for Alex featuring Jane’s recent 
sporting event.  Clearly this rule is overly simplistic; a 
production-quality rule might consider whether there 
might be other sports Jane is interested in, and whether 
the time of the event was a time of the year when 
baseball was commonly played, etc.   

5. Smart Asset Selectors 

Once the system has identified a candidate story to 
create for the user, the system must then select the 
appropriate set of assets to populate that story.  The 
SSDF provides a mechanism to define an arbitrary 
number of rulesets, where each ruleset consists of a set 
of rules resulting in potentially the selection of one or 
more assets.  Rulesets are named and stored in an 
XML-based file containing the Prolog or SPARQL 
definition as well as certain other modifiers controlling 
how the rule results are interpreted; a Java-based 
mechanism is used to control the execution of the 
appropriate ruleset. 

Referring back to the Mother’s Day album of 
Section 4.1, the following rules might be used to 
actually select the appropriate assets to create the 
story: 

• Select the two best pictures of the mother alone 
from any year. 

• Select the three best pictures of the mother 
with all children from the past year. 

• Select the single best picture of the mother 
with each child individually from any year. 

• Select the two best pictures of the mother with 
her mother from any year. 

• Select the three best pictures of the mother 
with family (children and spouse) from past 
year, from distinct subevents. 

• Select the two best short video clips, less than 
60 seconds, where the video clip is from a set 
of pictures classified as a “Family Moment.” 

Figure 3 illustrates the Mother’s Day asset selection 
ruleset, showing specifically the Prolog rules 
corresponding to the first and last rules identified 
above.  Before evaluating rules, the system substitutes 
the appropriate values for #OWNER, #PERSON, and 
#EVENT.  Where applicable, the string #OWNER is 
substituted with the user’s URI; #PERSON is 
substituted with the URI of the person suggested as the 
subject by the story trigger, and #EVENT is 
substituted with the URI denoting the event identified 
by the story trigger.  In the Mother’s Day example, the 
#OWNER would be replaced with the URI for Alex, 
and #PERSON would be replaced with the URI for 
Ann. 

Each Prolog rule may be satisfied by one or more 
variable bindings.  The first parenthesized expression 
in the definition portion of the rule declares the 
unbound variables.  The asset selection system expects 
each rule to list three unbound variables, resulting in 
each rule returning a set of triples.  The use of triples 
here is unrelated to the concept of subject, predicate, 
and object within the triple store; the system happens 
to use three values in collating the results of the 
various rules making up a rule set.  The first variable 
is always bound to the asset.  The second variable, 
given as ?date in both rules, provides a value against 
which to sort, in the case where the assets returned by 
the different rules are to be returned in a sorted order.  
In the example ruleset, the attribute sortResults is 
false, so this sorting step is not carried out.  The third 
variable, ?ivi in the first rule, is used for the purposes 
of sorting the values returned by a single rule.  For 
example, the first rule matches all of the pictures 
containing only the mother.  As this could potentially 
be a large number of pictures, the max attribute on the 
rule element limits the number to no more than two 
assets.  To pick which of the assets should be returned 
from all of the assets that satisfy the rule, the assets are 
sorted by the third variable, ?ivi, with the top two 
assets actually returned.  The last two clauses cause 
?ivi and ?date to be bound to the image value index 
and capture date for the asset, enabling the sorting to 
be carried out. 

In addition to the sorting and selection done after 
the rules are evaluated, the Prolog rules themselves 
may also incorporate the logic necessary to select the 
appropriate number of assets.  In some cases the 
selection criteria are better expressed in a more 
procedural language.  The system includes a variety of 
predefined relations to pick the best from among a set 
of assets according to some criteria, where the relation 
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is implemented using Prolog and/or Lisp as 
appropriate. 

6. Discussion 

The process of selecting and populating multimedia 
story products lends itself to being expressed as a 
knowledgebase.  Simple rules can be readily defined 
for when to create stories and how to choose assets to 
go into those stories.  These definitions can be readily 
modified and extended, even while the system is 
running. 

A number of issues surface in constructing a rule-
based system for story generation.  The parameters fed 
into the reasoner often were computed using 
probabilistic means and have an associated degree of 
uncertainty.  This uncertainty is handled by applying 
thresholds to make binary decisions; additional 
constraints or checks could be expressed as rules.  
Future research may wish to consider whether the use 
of other techniques for handling uncertainty would be 
better applied. 

In a similar manner, the current implementation 
requires the use of rigid ontologies in describing 
hobbies and interests.  Few such ontologies exist, and 
again, the use of a rigid ontology does not always 
correspond to real world situations. 

Understanding who and what an image portrays is 
critical to story generation, yet the technologies for 
people and object recognition are still in their infancy.  

This problem can be alleviated by allowing manual 
tagging, but such tagging may be tedious for the 
consumer and runs counter to the goal of automatic 
story creation.  As these technologies continue to 
mature, this will be less of an issue. 

The current implementation separates the process 
of selecting a story and choosing the assets for a 
particular story.  However, the availability of assets 
may influence the choice of story.  In the future, the 
system should support rules for story triggering that 
consider whether sufficient assets are available to 
adequately populate the story. 

This knowledge system could have been based on a 
variety of different database types.  Besides a triple 
store, the other obvious choice would have been a 
relational database.  While relational databases have 
rightfully earned their place as a powerful tool for 
storing structured data, they are less suited for 
representing semantic networks [11].  With the 
relational data model, introducing new types of data 
typically requires changing the database schema:  
either new tables need to be added, or the type of 
existing tables must be changed.  In the RDF data 
model, new data is simply added to the system.  
However, this flexibility comes at a cost:  a triple store 
requires an explicit triple for each piece of metadata, 
resulting in potentially redundant storage of the 
subject (the asset id) and predicate (the metadata type).  

Although the system uses the RDF data model for 
reasoning and can make use of RDFS and OWL-based 
reasoners, the bulk of the query logic is expressed in 
Prolog.  Story triggers are exclusively written in 
Prolog.  Rules used by the Smart Asset Selector may 
be written in either Prolog or SPARQL.  The 
SPARQL query language for RDF provides a 
straightforward means for querying a triple store for 
resources that satisfy a particular pattern.  However, 
SPARQL does not support inferencing, and so a 
simple query requesting pictures of a person and the 
person’s mother could not be directly expressed using 
SPARQL; the system would have had to infer the URI 
for the mother before making the query.  Likewise, 
RDFS and OWL-based reasoning is of limited utility 
in the current system.  OWL-based reasoning lets one 
infer the type of an object, but it does not let one infer 
relationships between objects.  For example, an OWL-
based reasoner might be able to infer that Frank is an 
uncle, but it would not be able to infer that Frank is 
Ann’s uncle.  Consequently, most rules used by the 
Smart Asset Selector are written in Prolog, which 
gives complete flexibility and expressiveness.  
Although Prolog is very expressive, writing efficient 
Prolog code can be challenging at times.  The close 
tie-in between Prolog and Lisp in the AllegroGraph 
product facilitated writing efficient rules, as the more 

<ruleset name="MothersDayAlbum"  
  friendlyName="Mothers' Day Album" sortResults="false"> 
 <rule max=“2" type=”prolog”> 
  <desc>Pictures only containing #PERSON</desc> 
  <definition> 
    (?pic ?date ?ivi) 
    (containsOnlyIdentifiedPerson ?pic #PERSON) 
                  (belongsTo ?pic #OWNER) 
    (hasIVI ?pic ?ivi) 
    (capturedOn ?pic ?date) 
  </definition> 
 </rule> 
 ... 
 <rule max="2" type=”prolog”> 
  <desc>video snippet</desc> 
  <definition> 
    (?movie ?date ?date) 
    (eventIsOfEventType ?e !!"FamilyMoment") 
    (eventContains ?e ?movie) 
          (assetIsVideo ?movie) 
                  (videoHasLength ?movie ?len) 
         (literalStringIsLT ?len "00:00:60" ) 
          (capturedOn ?movie ?date) 
  </definition> 
 </rule> 
</ruleset> 

Figure 3  Sample Ruleset 
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computationally expensive components can be easily 
expressed in Lisp, if necessary.   

A detailed performance analysis has not yet been 
carried out.  However, on a 32-bit dual processor 2.4 
GHz machine with approximately 8000 digital assets 
from which to select, executing individual rules takes 
between approximately 35 ms and approximately 400 
ms, with most rules in our test set executing in under 
100 ms.  The rule taking 400 ms was particularly 
complex, searching for the best pictures containing 
various combinations of people over a reasonably 
large people set. 

A variety of multimedia product types have been 
implemented and tested on previously collected 
consumer imagery, including the Mother’s Day and 
special event stories described in this paper, a tribute 
to a person story, a yearly calendar, and a personalized 
group event summary.  Further work is needed to 
verify that the chosen results are indeed acceptable to 
consumers.  Note that the consumer’s satisfaction with 
the final product is dependent upon both which assets 
are selected and how they are presented in the output 
product.  To give a preliminary assessment of the 
system’s utility, it was used to produce output for two 
externally recruited consumers, who were then given 
the opportunity to comment on the resulting products.  
The main comment noted on the choice of assets was 
that the system did not include as many assets as the 
consumer would have preferred, but that could be 
easily accommodated by a simple change to the rules.  
Additional research would be needed to determine 
what elements consumers typically expect to go into 
different types of products, and to what extent the 
rules need to be personalized for individual 
preferences.  In many cases, an automatically created 
story may function as a trigger to get the consumer to 
do more with their pictures; if the story requires only 
minimal editing by the consumer, then it will be a 
success. 

7. Summary 

This work demonstrates the feasibility of using a 
knowledgebase to create consumer multimedia stories 
from a user’s collection of pictures and videos.  This 
framework quickly produced compelling stories by 
selecting a small number of assets out of thousands of 
assets within a collection.  The RDF data model 
combined with a logic programming language enables 
easy construction and extension of rules driving 
system behavior.  The SSDF implements these 
concepts to produce selective consumer-grade albums 
and multimedia presentations from thousands of 
consumer digital assets. 
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